IAG ICP1.2 Vertical Reference Frames

Minutes of the Project Meeting

IAG Scientific Assembly 2005, Dynamic Planet

Cairns, Australia

Meeting place:	IAG Scientific Assembly 2005, Cairns, Congress Centre
Begin:	August 22, 2005, 06:00 p.m.; End: 07:30 p.m.
Participants of the meeting:	Ruth Adams, Matt Amos, Susana Barbosa, Dorata Brzezinska, Alessandro Capra, Joana Fernandes, Georgia Fotopoulus, Petr Holota, Jianliang Huang, Johannes Ihde, Bill Kearsley, Jan Krynski, Jaakko Mäkinen, Urs Marti, Markku Poutanen, Daniel R. Roman, Laura Sanchez, Zdislav Šima, Viliam Vatrt, Marie Vojtiskova,
ICP1.2 Members	see Annex 1

Agenda

- (1) Objectives, Status of Work, Expected Results
- (2) Conventional Vertical Reference System and Frame (CVRS, CVRF)
 - Definition of WHS (IVRS): Conventions for datum, codes, time dependent variations, parameters
 - Realization of WHS (IVRF): Conventions and specification for procedures of computations (data reductions, selections of alternative procedures), selection of data, station distribution.
- (3) Realization of IVRF
 - Realization of WHF datum (parameters) and WHF prototype (IVRFyy)
 - Relationship between existing VRF and IVRFyy (Unification, transformation parameters)
 - Combination of IVRF and ITRF (consistency).
- (4) Service and outreach
 - WHF Meta data information system
 - Cooperation with other IAG sub-commissions and projects
 - Publications, papers, posters and leaflet
 - Homepage?
- (5) Varia, further actions
- (6) Dinner 8.00 p.m.

Presentations:

Laura Sanchez: Empirical Determination of W₀ (Annex 6)

Viliam Vatrt : Progress Report of Special Study Group Global Geodesy Topics: Satellite Altimetry Applications (Annex 7)

(1) Objectives, Status of Work, Expected Results of ICP1.2

Based on the classical and modern observations, the ICP1.2 on Vertical Reference Frames shall study the consistent modelling of both, geometric and gravimetric parameters, and provide the fundamentals for the installation of a unified global vertical reference frame.

The following aspects shall be mentioned summarizing:

Motivation

- IAG Project Global Geodetic Observing System GGOS
- Vertical Systems are the natural frame and application for combination of geodetic space techniques and gravity
- New experiences of IAG regional sub-commissions in field of height reference system unification
- Results of satellite gravity missions available
- New set of parameters in a higher accuracy level is available (IERS conventions 2003).

Objectives

- Elaboration of a proposal for the definition and realization of a global vertical reference system (World Height System WHS);
- Derivation of transformation parameters between regional vertical reference frames;
- Establishment of an information system describing the various regional vertical reference frames and their relation to a world height frame (WHF).

Program of Activities

- Harmonization of globally used height data sets;
- Study of combination procedures for height data sets from different techniques;
- Study of information on regional vertical systems and their relation to a global vertical reference system for practical applications;
- Unification of regional (continental) height systems.

Actions of IAG ICP1.2 Porto Meeting, August 31, 2004 Porto, Portugal

A result of the controversial discussion about the definition and realization of a global vertical reference system was the composition of two work packages.

The first work package will address

- convention and standards for a Conventional Height System, a World Height System and a World Height Frame
- relationship to the CTRS, CTRF and gravity standards
- datum realization (handling of information of the satellite altimetry, possible role of the TIGA project, mean earth ellipsoid versus *W*₀)

This work package will be in executed in collaboration of J. Ihde, J. Krynski, J. Mäkinen and V. Vatrt.

The second work package is related to the

- unification of height systems and
- collection and distribution of information about the different national height systems including transformation parameters.

Members of the group are M. Amos, A. Kasenda, Bill Kearsly, G. Liebsch, D. Roman and M. Veronneau.

Contributions/Papers

A. Ardalan et al.:	Global Height Datum Unification: A new approach in the gravity potential space.
A. Ardalan et al.:	New Global Estimates of the Geoid's Potential Value, Sea Surface Topography, and the Geoid based on 11 years of Topex/Poseidon Satellite Altimetry Data.
A. Ardalan et al.:	A new global ocean tide model based on orthonormal base functions and 11 years of Topex/Poseidon satellite altimetry data
M. Bursa et al.:	Geopotential for Specifying Relativistic Amomic Time Scale and Global Vertical Reference System
M. Bursa et al.:	Determination of Geopotential $W_{0,Alicante}$ AT Alicante LVD and its Connection to NAVD88, and IGN69 LVDs. Progress Report (July 2005)
M. Bursa et al.:	A Global Vertical Reference Frame GVRF05
J. Ihde, L. Sanchez:	A Unified global height reference system as a basis for IGGOS
J. Ihde et al.:	Transformation Parameters between European Height Reference Frame and pan-European EVRS
J. Mäkinen:	Some remarks and proposals on the re-definitionof the EVRS and EVRF
L. Sanchez:	Definition and realization of the SIRGAS vertical reference system within a globally unified height system

(2) Conventional Vertical Reference System and Frame (CVRS, CVRF)

The conventions for the definition and realization of a WHS shall be aligned to the IERS 2003 Conventions.

The IERS 2003 Conventions already basically contain the current parameters and procedures for reduction of coordinates. For the specifications of a WHS the parameters and procedures should be checked in detail within the next 2 years whether they meet the demands.

So it should be considered whether the value for *W*₀ that was derived by Bursa and included into the IERS Conventions should be maintained or current results like e.g. from Ardalan should be included.

All other relevant numerical values have to be considered.

The following tasks need to be realized:

- Definition of WHS (IVRS): Conventions for datum, codes, time dependent variations, parameters
- Realization of WHS (IVRF): Conventions and specification for procedures of computations (data reductions, selection of alternative procedures), selection of data, station distribution.

Generally the following approach is apparent:

- The level of a WHS is fixed to *W*₀.
- The height component (coordinates, codes) are differences of the Earth's gravity potential. It can be determined by levelling or from differences between GPS heights and a global gravity model, representing the mean geoid.
- The parameters, codes and the observations of the WHS have to be consistently related to the Zero Tidal System.

CVRS Conventions (Definition)

The Conventional Vertical Reference System (CVRS) is a gravity-related height reference system. It is defined by the following conventions:

a) The vertical datum is the zero level of which the Earth gravity field potential *W*₀ is equal to the normal potential of the mean Earth ellipsoid *U*₀:

$$W_0 = U_0.$$

b) The height components are the differences ΔW_P . between the potential W_P of the Earth gravity field through the considered points P and the potential of the CVRS zero level W_0 . The potential difference - ΔW_P is also designated as geopotential number c_P :

 $-\Delta W_P = W_0 - W_P = c_P.$

Normal heights are equivalent to geopotential numbers.

c) The CVRS is a zero tidal system¹, in agreement with the IAG Resolutions No 16 adopted in Hamburg in 1983

¹⁾ In a) and b) the potential of the Earth includes the potential of the permanent tidal deformation but excludes the permanent tidal potential itself.

(3) Realization of IVRF

Comparable to the ITRS 2003 conventions standards for the realization procedures of a WHS have to be fixed. Special items are:

- Realization of WHF datum (parameters) and WHF prototype (IVRFyy)
- Relationship between existing VRFs and IVRFyy (Unification, transformation parameters)
- Combination of IVRF and ITRF (consistency).

Generally the following approach for the realization of physical height systems is apparent:

1) $W_P = U_P + T_P (BVP)$

For a WHS applicable

from a new GGM (IAG2005, or a combined CHAMP/GRACE model - CG01C)

$$\zeta = \frac{T_p}{\gamma_O} = \frac{W_P - U_P}{\gamma_O}$$

and GPS heights h_P

$$H_n = h_P - \zeta$$

2) $W_P = W_0 - c_P$ (levelling)

$$H_n = \frac{c_P}{\bar{\gamma}}$$

<u>datum</u>

geocentric, including oceans and atmosphere

*W*₀ independent from the tidal system

coordinate system

SI units $m^2 \cdot s^{-2}$

 $W_P = U_p + T_P (BVP)$ $W_P = W_0 - c_P (levelling)$

<u>frame</u>

The following approach for the unification of height reference systems (derived by levelling) is apparent:

 Generally and globally applicable is the unification with a global gravity model (GGM) and GPS/levelling points. At the GPS/levelling points a high resolution gravity model related to a GGM is useful. A specific solution of a GGM should be recommended as conventional model, to realize a uniform unification.

- Reducing tide gauge observations by the mean sea surface topography (SST) to a GGM.

$$H = h(TG/MSL) - MST(ALT,GGM)$$
 in tide gauges

 Furthermore the unification of height reference systems can be realized by connecting levellings (applicable only on continents).

Combination of the single procedures is, if possible, useful.

(4) Service and outreach

The following items were discussed

- Development of a WHF Meta data information system
- Cooperation with other IAG sub-commissions and projects and FIG
- Publications, papers, posters and leaflet
- Installation of Homepage

(5) Actions

Conventions for WHS definition and realization (CVRS, CVRF) – structure and editorial staff:

The Conventions for WHS definition and realization (CVRS, CVRF) shall have the a structure following IERS conventions 2003:

- General Definitions and Numerical Standards 1. 1.1 Permanent Tide (Markku Poutanen) 1.2 Numerical Standards (Proposed: Milan Bursa, tbd) CVRS and CVRF 2. Concepts and Terminology 2.1 (Johannes Ihde) **Basic Concepts** 2.1.1 2.1.2 IVRS 2.1.3 IVRF 2.2 **IVRF** products Relations between IVRS and ITRS (Johannes Ihde) 3. Relations between IVRS and regional and local VRS. (Johannes Ihde) 4. Bibliography
 - All member of ICP1.2 WG were asked to inform Johannes Ihde about relevant publications and send him the bibliographic information
 - Meta data information system
 BKG will prepare a template for selecting meta data following the content of the CRS-EU information system

(6) Varia

- ICP1.2 Workshop in spring 2006, fixed for April 10/11, 2006 in Prague Invitation and agenda will followed till end of 2005
- ICP1.2 meeting at GGSM2006 in September 2006 in Istanbul

Keeper of the Minutes: Johannes Ihde, Daniel R. Roman

ICP1.2 Members

Amos, Matt	1
Ardalan, Alireza A.	I
Bosch, Wolfgang	(
Bruyninx, Carine	F
Bursa, Milan	(
Capra, Alessandro	Ì
Cunderlik, Robert	
Dam, Tonie van	ì
Demianov, Gleb	Ì
Featherstone, Will	,
Heck, Bernhard	(
Holota, Petr	Ì
Ihde, Johannes	Ì
Jekeli, Christopher	ì
Kasenda, Adolfientje	/
Kearsley, Bill	1
Klees, Roland	
Krynski, Jan	F
Liebsch, Gunter	(
Mäkinen, Jaakko	ł
Marti, Urs	
Mojzes, Marcel	3
Poutanen, Markku	ł
Roman, Dan	l
Sanchez, Laura	(
Schöne, Tilo	(
Shipman, Steve	I
Šima, Zdislav	(
Simek, Jaroslav	(
Vatrt, Viliam	(
Véronneau, Marc	(
Vojtiskova, Marie	(
Wilmes, Herbert	(

New Zealand Iran German Belgium Czech Republic Italy Slovakia Luxemburg Russia Australia Germany Czech Republik Germany USA Australia Australia Netherlands Poland Germany Finland Switzerland Slovakia Finland USA Germany Germany Monaco Czech Republik Czech Republic Czech Republik Canada Czech Republik Germany

Annex 2

TCP 1.2 Meeting Cairus 05-08-22 e-mail Name sanchez@dgfi.badw.de aura AURA SANCHEZ Markky Poutanen Harkky. Poutanen@fgi.R. DBRZEZINSKAC OSCE. EDU Alvalu DOROTA BRZEZINSKA all A. CAPRA@POUBA. M ALESSANDRO CAPRA urs mark@swisstopo.ch ().K MRS MARTI Mamos Clinz-gout. NZ Matt Amos 5 Jaakko Makinen JAAKKO MAKINEN @EGI-FI RUTH ADAMS ruth. colons @ ukho.gov. uk Alda. VILLADY VATRI Vatria Vghur, army, cz UJ mania. vojtskova @ vghur. anmy, cz Vglin MARIE VOSTISKOVA sima@ig.cas.cz Zdislav SIMA Kryvski @ inik. edg. pl Jan Kuynski W. kearslege unsw, edu. an SILL KEARSLEY afotopou @ ucalgary. ca GEORGIA FOTOPOULOS PETR HOLOTA holota @pecny.asu.eas.cz Duniel R. Roman dan, roman @ noaa.gov Joana Termandes Joana Termandes mijfeenan pfc.up.pt yrends Susana Barbosa JIMLIAG HUANGLON behaf of M. Veronneau) jienhuan @ norcan gc.co, JL. Hang johannes ihde Dbkg. bund. de Chang lu Johannes Inde

Relations between ITRS and IVRS/WHS (conventions, parameters, realization)

ITRS

IUGG Resolution No. 2, Vienna 1991

IAG ICP1.2 Vertical Reference Frames

WHS/IVRS

origin

Explicit

Geocentric, the center of mass being defined or the whole Earth, including oceans and atmosphere.(At present no convention related to the motion of the geocentre) Implicit

orientation

Initial BIH orientation. Non-rotating system. No global residual rotation with respect to horizontal motions at the Earth's surface. No necessary convention

units-scale

SI unit meter The ITRS scale consistent with the Geocentric Coordinate Time (TCG) SI units meter and seconds $W_0 = U_0$ The scale of the Earth body W_0 is approximated by the normal potential of the mean Earth ellipsoid U_0 which includes the masses of the oceans and the atmosphere.

coordinates

quasi – Cartesian system X

potential of the Earth gravity field $W_P = W(X)$ $= U_P + T_P$ (GPM) $= W_0 - c_P$ (Levelling)

system parameters

mean Earth ellipsoid $(U_0, \text{ GM}, \text{ J}_2, \text{ w})$

realization

EVRF 2000 (UELN 95/98, ETRS89) $W_P = W_{NAP} + c_P$ (Levelling) zero tidal system (?) GRS 80

ITRF 2000 tide-free

Height Components and Tidal Systems

	gravity g/∆g	geoid W/N	levelling height ∆H	altimetry h	mean sea level msl	position X/h
Mean tidal system Mean/zero crust (Stokes is not valid if masses outsite the Earth surface)	∆gm	Nm	ΔHm	Relation to oceanogra studies		
Zero tidal system Mean/zero crust (Recommended by IAG Res. No. 16, 1983)	∆gz <u>Sto</u>	ekes Nz (EGG97)	∆H _Z cp			
Tide-free system Tide-free crust (unobservable, far away from the real earth shape – there is no reason for the non tidal/tide free concept)	∆gn <u>Sto</u>	okes _▶ N _n (EGM96)				X _n ITRFxx, ETRS89

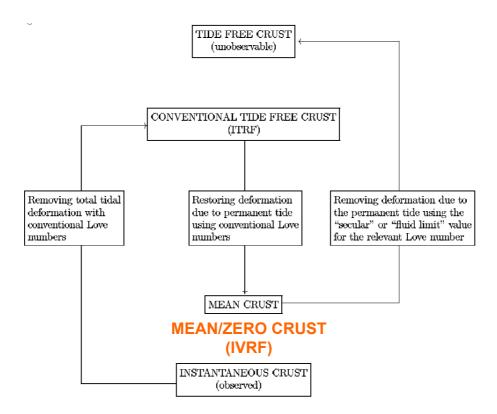


Figure 1.1. Treatment of observations to account for tidal deformations in terrestrial reference systems (see Chapters 4 and 7).

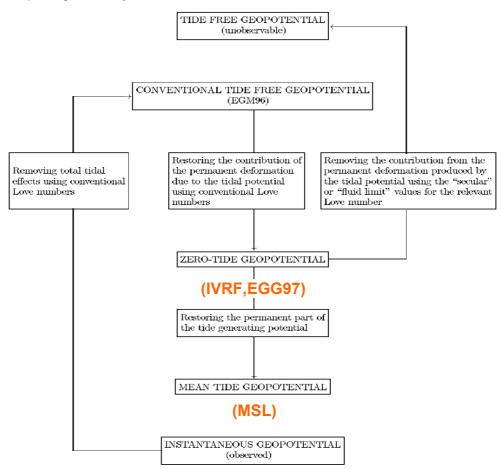
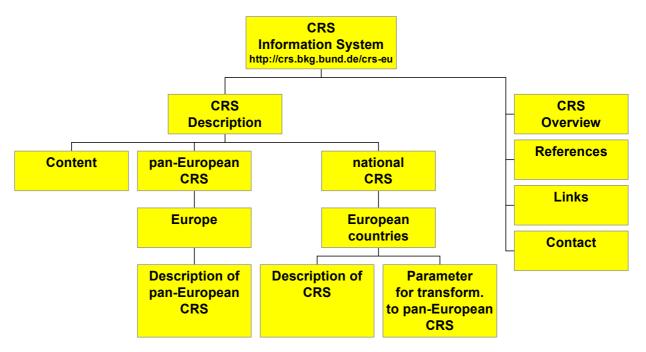



Figure 1.2. Treatment of observations for tidal effects in the geopotential (see Chapter 6).

(from IERS Conventions 2003)

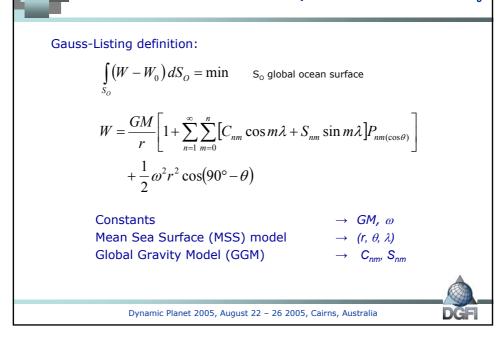
The Information System for European Coordinate Reference System (CRS-EU) (meta data)

http://crs.bkg.bund.de/crs-eu

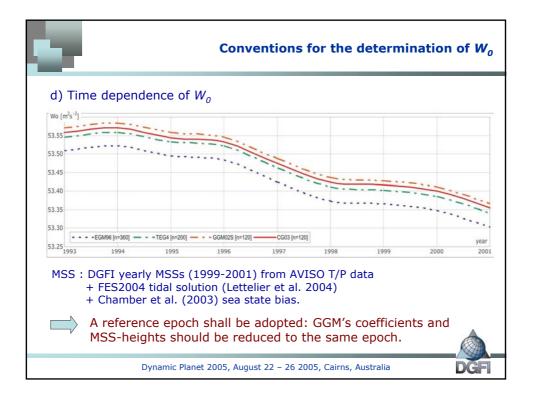
Content for gravity related heights

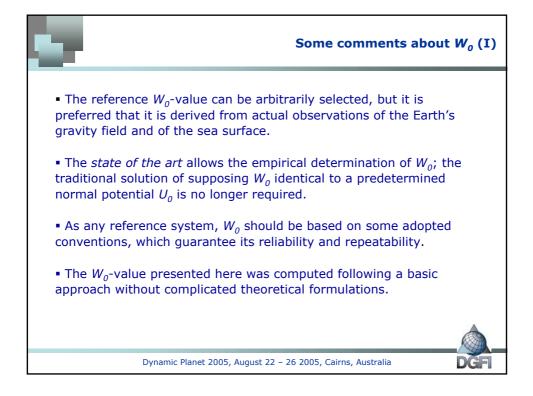
- descriptions of national height reference systems
- description of pan-European CRS for height EVRF2000
- transformation parameters for height from national systems to EVRF2000

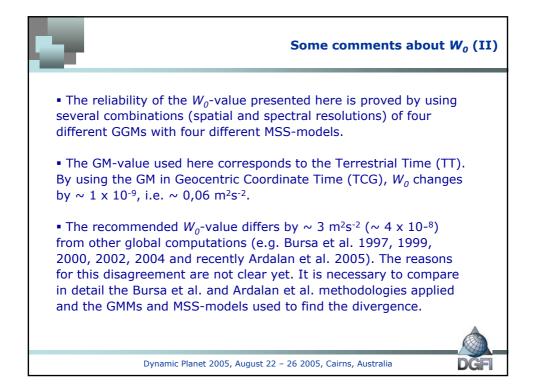
The information

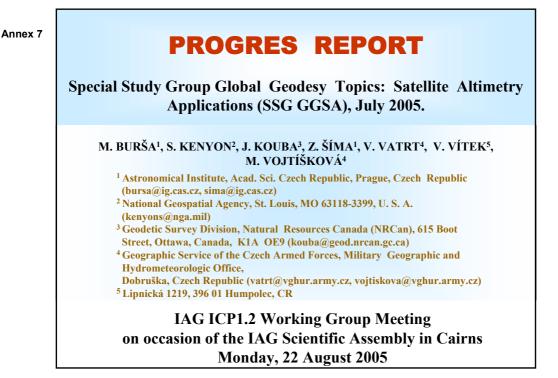

- were prepared by BKG and agreed with NMA
- or provided from the National Mapping Agencies (NMA) themselves
- always unified and prepared regarding ISO-Standard 19111:2003

Available EVRS transformation parameters from levelling


Country	Verificatio	identical points		Parameters					RMS	residual deviations	
	by the	number + kind	translation		incl. in incl. in		in cm	min	max		
	country		in cr		latitu		longitude		III CIII	in cm	in cm
	country			11	in cn		in cn				
					100k		100k				
AT	Х	114 UELN	_	35.6	-	2.8	-	2.8	3.1	-6.1	+6.1
BA/HR		40 UELN	-	34.5	_	0.3	-	0.9	0.7	-1.0	+1.4
BE	Х	4 EUVN	_	231.1		0.8			0.2	-0.2	+0.2
BG	X	36 UELN	+	18.2	+	0.1	-	0.2	0.2	-0.6	+0.4
CH (LN02)	X	225 UELN	-	24.5	_	10.2	-	1.6	3.3	-8.6	+9.4
CZ		53 UELN	+	11.6	+	1.7		-	1.4	-3.5	+2.8
DE	х	443 UELN	+	1.4	-	0.1			0.2	-0.7	+0.6
(DHHN92)											
DK	х	707 UELN	+	1.1	+	0.1	+	0.5	0.3	-0.9	+0.8
EE	Х	36 UELN	+	13.3	-	0.7	+	0.2	0.3	-0.5	+0.5
ES	х	70 UELN	-	48.6	_	0.2	+	0.3	1.0	?	?
FI		66 UELN	+	21.3					0.3	-0.7	+0.9
FR	х	8 EUVN	-	48.6					0.5	-0.4	+1.0
GB	х	5 EUVN	+	8.1	-	2.7	-	1.1	1.9	-1.2	+2.2
HR		40 UELN	-	34.5	-	0.3	-	0.9	0.7	-1.0	+1.4
HU	х	35 UELN	+	14.0	+	0.4	-	0.1	0.3	-0.7	+0.6
IT		9 EUVN	-	35.3	+	0.2	+	0.3	0.7	-0.6	+1.1
LT	х	46 UELN	+	10.2			+	0.1	0.2	-0.2	+0.3
LV		123 UELN	+	10.5			+	0.2	0.7	-2.0	+2.2
NL	х	757 UELN	I	0.5					0.2	-2.1	+0.4
NO	Х	117 UELN	I	0.1	-	0.5	+	1.7	3.7	-7.6	+7.0
PL		98 UELN	+	16.0	+	0.5			0.5	-2.0	+0.9
PT	Х	5 EUVN	-	31.5					1.3	-1.4	+2.1
RO		46 UELN	+	2.8	+	0.1	+	0.1	0.2	-0.5	+0.9
SE		21 EUVN+Tide	+	1.0	-	0.6			1.1	-2.3	+2.0
		G									
SI	Х	9 UELN	-	41.1		1.6	+	0.4	0.3	-0.4	+0.4
SK		3 EUVN	+	12.2	+	1.0			0.2	-0.1	+0.1


Empirical determination of W_o




MSS	n	EIGEN-CG03C	EGM96	TEG4	GGM02S	φ [N/S]
	120	62 636 85 <mark>3,35</mark>	62 636 85 <mark>3,37</mark>	62 636 85 <mark>3,38</mark>	62 6368 5 <mark>3,36</mark>	60/60
CLS01	200	53,35	53,37	53,37		60/60
	360	53,35	53,36			60/60
KMS04	360	53,24	53,26			60/60
GSFC00.1	360	53,58	<mark>5</mark> 3,59			60/60
	120	62 636 85 <mark>4,61</mark>	62 636 85 <mark>4,62</mark>	62 636 85 <mark>4,65</mark>	62 636 854 <mark>,61</mark>	82/80
CLS01	200	54,61	54,62	54,64		82/80
	360	54,61	54,61			82/80
KMS04	360	54,46	54,45			82/82
GSFC00.1	360	54,93	54,93			80/80

	Recommendation
<u>GGM</u> :	EIGEN-CG03C, $n = 120$ at 2000.0
MSS-model:	From T/P, between $\varphi = 60^{\circ}$ N/S, with 1° x 1° resolution at 2000.0
<u>Constants</u> :	$GM = 398\ 600,4415\ x\ 10^9\ m^3 s^{-2};$ $\omega = 7\ 292\ 115\ x\ 10^{-11}\ rad\ s^{-1}$
Procedure:	Gauss-Listing definition, empirical evaluation of the actual gravity potential at MSS-heights and W,-values averaged using $\cos \varphi$ as a weight.
	$W_o = 62\ 636\ 853,4\ m^2 s^{-2}$
D	ynamic Planet 2005, August 22 – 26 2005, Cairns, Australia

Main activities of SSG GGSA within IAG ICP-1.2 (September 3, 2004 – Porto- to August 22, 2005) -development of Global Vertical Reference Frame (continuation) -presentation SSG GGSA at Geographic conference of NATO, Brussels 2005 -a joint Project of Instituto de Astronomia y Geodesia (UCM-CSIC) Madrid (M. J. Sevilla), and (SSG GGSA)

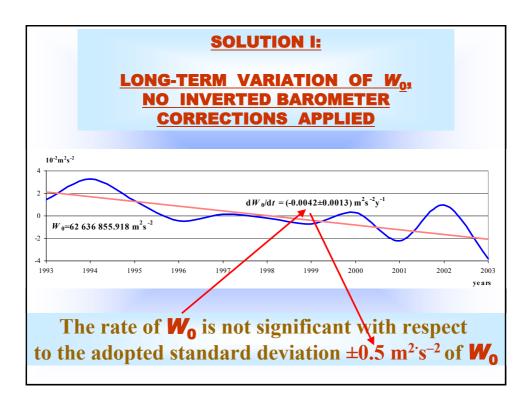
Paper for IAG Scientific Assembly in Cairns "GEOPOTENTIAL FOR SPECIFYING RELATIVISTIC ATOMIC TIME SCALE AND GLOBAL VERTICAL REFERENCE SYSTEM"

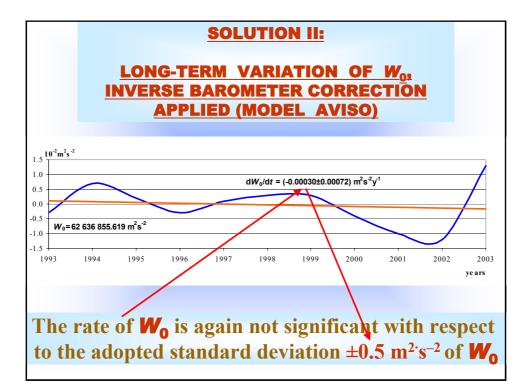
-The paper was presented on August 22, 2005 (morning)

-Copies of presentation are available

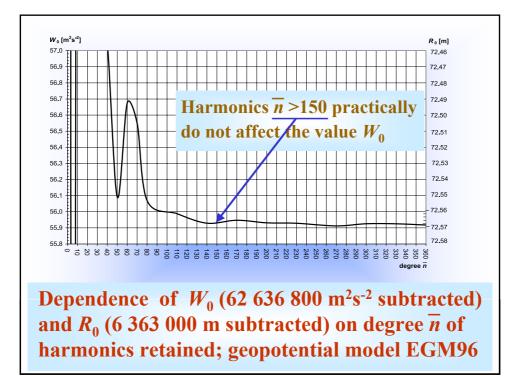
-Here, only the main ideas will presented

-On the basis of T/P data during 1993-2003, we have determined the value of W_0 , the rounded value is W_0 = (62 636 856.0±0.5) m² s⁻²


-This rounded value W_0 has already been adopted by the IAU for the definition of the constant $L_G = W_0/c^2$ (for the realization of the relativistic Atomic Time scale.


Investigation the long-term variation in W₀

The long-term variations in W_0 have been investigated on the basis of T/P data during 1993 - 2003


-solution I : No inverted barometer correction applied

-solution II : Inverted barometer correction applied

ON THE BA	RECENT W ₀ -VALUES DETERMINED ON THE BASIS OF DIFFERENT GEOPOTENTIAL MODELS								
Geopot. model	n	W_0 $[\mathbf{m}^2 \cdot \mathbf{s}^{-2}]$	rms $[m^2 \cdot s^{-2}]$						
EGM96	360	62 636 855.918	±0.005						
GRACE -GGM02C	200	62 636 855.832	±0.005						
GRACE EIGEN-CG01	360	62 636 855.883	±0.005						
/									

Derived parameters of the Earth's mean										
ellipsoid and its gravity field.										
Tidal	J_2	а	1/α	Ye	β	$-\beta_1$	wo			
System	[10 ⁻¹⁰]	[m]	[10 ⁻⁵]	[mGal]	[10 ⁻⁸]	[10 ⁻⁸]	[10 ⁻⁹]			
Zero	10 826 359	6 378 136.58	298 256 45	978 032.67	530 243	582	3 194 711 525			
	±1	± 0.10	±1	± 0.05	± 8		±1			
Mean	10 826 667	6 378 136.68	298 252 33	978 032.69	530 238	582	3 194 704 607			
	± 1	± 0.10	±1	± 0.05	± 8		±1			
Tide-free	10 826 267	6 378 136.55	298 257 68	978 032.67	530 245	582	3 194 713 591			
$(k_2 = 0.301 \ 9)$	± 1	± 0.10	±1	±0.05	± 8		±1			
Ado	pted:		I	I			· · · · · · · · · · · · · · · · · · ·			
GM	= (398	600 442	1.8 ± 0.1	.8) × 10) ⁶ m ³	s ⁻² ,				
$\omega =$	7 292	115 × 1	0 ⁻¹¹ ra	d∙s ^{−1} ,						
$J_2 =$	(1 082	635.9 ±	= 0.1) ×	10 ⁻⁹ ,						
$\bar{W}_0 =$	62 636	5 856.0 1	m^2s^{-2}							

Geopotential W₀

- a fundamental geodetic constant suitable to specify a Global Vertical Reference System (GVRS)

-Because the rate of W_0 is not significant the rounded value of W_0 can by also adopted to specify the GVRS

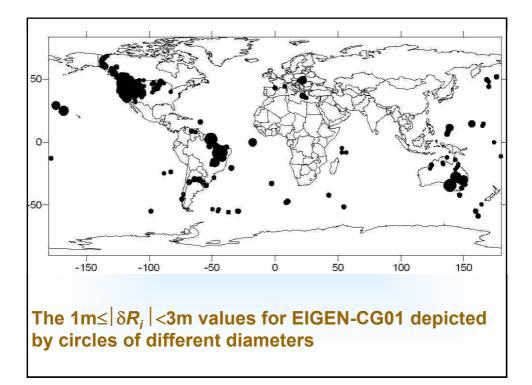
-the numerical value $W_0 = (62\ 636\ 856.0\pm 0.5)\ m^2\ s^{-2}$

should be preferred, because it has already been used for the definition of the constant L_G (adopted at IAU XXIVth General Assembly (2003)

MAIN CONCLUSIONS

-The mean geopotential value W_0 of the mean ocean surface may be adopted for specifying the Earth's dimension

-The rounded value $W_0 = 62\ 636\ 856.0\ m2 \cdot s - 2$ is preferable, because it has <u>already been adopted by</u> <u>the IAU</u> for *LG* - value, which was specified as a defining constant

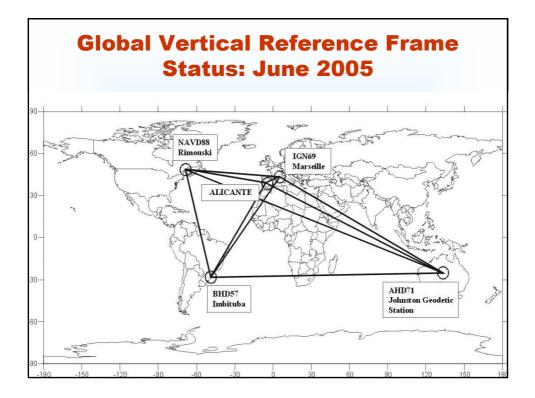

-No perturbing function, which is globally harmonic, does affect W_0 .

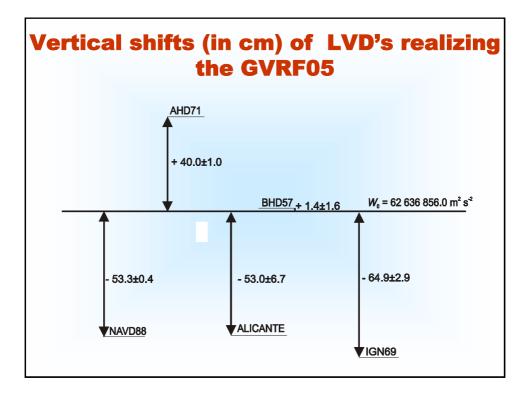
MAIN CONCLUSIONS(Cont'd)

-Due to its simplicity and uniqueness a global gravity field model is preferred for GVRS specification/realization as well as for LVD connections,

-Locally improved gravity fields increase complexity and may introduce additionally biases and computational ambiguities

PRESENTATION of SSG GGSA AT THE GEOGRAPHIC CONFERENCE NATO, BRUSSELS 2005										
LVD shifts based on GPS/leveling data and geopotential models <u>GRACE</u> and <u>EGM96</u>										
	Number		$W_{0,i} [m^2 s^{-2}]$		LVD shifts [cm]					
LVD	of	(62 636 0	$00 \text{ m}^2\text{s}^{-2} \text{ su}$	btracted)	related to					
i	testing		-			636 856.0				
	sites	EIGEN-CG01 n = 360	$\begin{array}{c} \text{GGM02C} \\ n = 200 \end{array}$	EGM96 n = 360	EIGEN-CG01 n = 360	GGM02C n = 200	EGM96 n = 360			
NAVD88 Rimouski	6 475	861.27 ± 0.04	861.25 ± 0.06		-53.6 ± 0.4	-53.3 ± 0.6	-52.8 ± 0.5			
NAP Normaal Amsterdamsch Peil	80	858.76±0.37	858.22 ± 0.41	857.08 ± 0.41	-28.0 ± 3.8	-22.5 ± 4.2	-11.0 ± 4.0			
KHD Kronstadt	588	855.16±0.12	854.90 ± 0.14	857.63 ± 0.13	8.5±1.3	11.1 ± 1.4	-16.6 ± 1.3			
AHD Johnston Geodetic Station	866	852.17±0.15	852.58±0.18	851.98±0.18	38.9±1.5	34.7 ± 1.8	+40.9 ± 1.8			
BHD Imbituba	177	856.00 ± 0.60	854.99±0.63	855.68 ± 0.66	0.0±6.1	10.6 ± 6.4	+3.2 ± 6.7			
IGN69 Marseille	973	862.10±0.34	861.89±0.35	862.68±0.35	-62.0 ± 3.4	-59.8 ± 3.5	-67.9 ± 3.5			


<u>A joint Project of</u> Instituto de Astronomia y Geodesia (UCM-CSIC) Madrid (M. J. Sevilla), and SSG GGSA


-Determiation of geopotential $W_{0,ALICANTE}$ at Alicante LVD and its connection to NAVD88, and IGN69 LVDs

-A global vertical reference frame GVRF05

-The GVRF04 (2004) developed by the SSG GGSA was enlarged by adding the Local vertical Datum (LVD) of the Alicante Spanish national datum

-The geopotential value $W_{0,ALICANTE}$, determined on the basis of 303 GPS/leveling sites well distributed over the whole territory of Spain, makes it possible to include the Spanish LVD_{ALICANTE} into the proposed GVRF

-The Helmert orthometric heights over the territory of Spain were transformed to the Molodensky normal heights using the current SSG GGSA procedure

-Tidal corrections applied, i.e the tide-free model used.