Towards a Vertical Datum Standardisation

Laura Sánchez

on behalf of

Vertical Datum Standardisation

Joint Working Group JWG 0.1.1 of

GGOS Theme 1: Unified Global Height System IAG Commission 1: Reference Frames IAG Commission 2: Gravity Field International Gravity Field Service

Introduction

Studying (understanding and modelling) global change requires geodetic reference frames with

- Order of accuracy higher than the \
 magnitude of the effects we want to study;
- Consistency and reliability worldwide;
- Long-term stability.

Definition, realisation, maintenance and **use** of the ITRS/ITRF guarantees a worldwide unified geometric reference frame with reliability in the mm-level.

Physical height systems

- As many reference levels as reference tide gauges;
- Different types of heights (normal, normal-orthometric, orthometric ...);
- Omission of height variations with time;
- Inconsistencies of many [dm] at borders between datum zones;
- Low reliable comparison of height-dependent observables (gravity anomalies, (quasi-)geoid heights, etc.);
- Imprecise [cm ... dm] combination with the geometric reference [h-H-N≠0]

Unified reference level W_o

- One global unified reference level (W₀ or global geoid);
- All existing geopotential numbers (physical heights) referring to one and the same global level;
- Precise combination with geometric heights and geoid models of high resolution.

Consistent height determination

Today

Levelling in combination with gravity reductions

Desired

Disturbing potential in combination with a reference ellipsoid

In the future

Global gravity field models in combination with ITRS/ITRF coordinates

Comparison of clock frequencies of high-precision

$$C(g,dn) = W_0 - W_P = \int_0^P g \; \delta n \cong \sum_0^P g \; dn$$

$$C(U_0,T) = -(U_0 - W_0) + \bar{\gamma}(\varphi)h - T(\varphi,\lambda,h)$$

$$C(\overline{C}_{nm}, \overline{S}_{nm}) = W_0 - [V(r, \theta, \lambda) + Z(r, \theta)]$$

$$C(f) = c^2 \left(\frac{f - f_0}{f_0} \right)$$

GOAL: $C(g,dn) \approx C(U_0,T) \approx C(\overline{C}_{nm},\overline{S}_{nm}) \approx C(f)$ in cm-level (better in mm-level), globally.

Vertical datum standardisation

levels with the global W₀

Empirical estimation of W₀

In the 1990s and before:

$$W_0 = U_0; \ U_0 = U(a, f, \omega, GM); \ U_0 = U(a, J_2, \omega, GM)$$

Late 1990s and 2000s

$$\int_{S} \Xi^{2} ds = \min; \quad \Xi = \frac{W_{0} - W_{j}}{\gamma_{j}}$$

$$\Xi : \text{Sea surface topography}$$

- Points *j* with coordinates from satellite altimetry describe the mean sea surface;
- Potential values W are derived from a global gravity model

Today: solution of the fixed geodetic boundary problem

$$\nabla \delta W(\mathbf{X}) = 0 \qquad \mathbf{X} \in \Omega$$
$$\delta W(\mathbf{X}) \to 0 \qquad \mathbf{X} \to \infty$$
$$\delta g(\mathbf{X}) = g(\mathbf{X}) - \gamma(\mathbf{X}) \quad \mathbf{X} \in \Sigma$$

Boundary surface Σ known;

Unknown: disturbing potential δW Boundary condition: gravity disturbances δg

Regularisation: δW vanishes at infinity

 $X \leftrightarrow$ sea surface from satellite altimetry, continental surfaces from SMRT $g(X) \leftrightarrow$ global gravity model $\gamma(X)$, $U_0 \leftrightarrow$ GRS80

Some estimations of W₀

W ₀ [m ² /s ²]	Comments
62 636 860,850	GRS80, Moritz (2000)
856,88	Best fitting ellipsoid for the mean sea surface from T/P, Rapp (1995)
856,2	Mean sea surface: T/P (1993-2001),
	Global gravity model: EGM96 , Burša et al. (2002)
854,6	Mean sea surface: CLS01 (ϕ = 80°N/S),
	Global gravity model: EIGEN-GC03C
	Reference epoch: 2000.0, Sánchez (2009)
854,3	Mean sea surface: CLS01 (ϕ = 80°N/S),
	Global gravity model: EIGEN-GC03C
	Reference epoch: 2000.0, Čunderlík and Mikula (2009)
854,4	Mean sea surface: DNSC08 ($\phi = 80^{\circ}N/S$),
	Global gravity model: EGM2008 ,
	Reference epoch: 2005.0, Dayoub et al. (2012)
854,6	Mean sea surface: T/P, J1 (1993-2009),
	Global gravity model: EGM2008, Burša et al. (2011)

 W_0 = 62 636 856,0 included in AGU and IERS Conventions from Burša et al. (2002), It differs about ~ 4 x 10⁻⁸ (~ 3 m²s-², ~ 30 cm) from recent computations.

Vertical datum unification

Basic approach:
$$h - H - N = \frac{\delta W}{\gamma}$$

But:

- Usage of different ellipsoid parameters
- Heights (h, H, N) in different tide systems
- Mixture of orthometric hypothesis (heights and geoids)
- Omission of levelling error accumulation
- Different reference epochs (unknown dH/dt)
- Different reductions (Earth-, ocean-, atmospheric tides, ocean and atmospheric loading, post-glacial rebound, etc.)
- Not appropriate error propagation analysis in the combination of satellite and terrestrial gravity data.

- The ITRS/ITRF provides a highly precise geometrical reference frame (consistent in sub-cm level worldwide);
- An equivalent highly precise physical reference frame is missing, it must be given by realising a Global Unified Height System;
- The uniqueness, reliability and repeatability of the global reference level W₀ (or global geoid) can be guaranteed by introducing specific conventions only. On the contrary, there will exist as many height systems as W₀ computations.
- It is necessary to implement (and to follow) **standards**, **conventions** and the "**step by step**" for the usage of h-H-N in the vertical datum unification. Otherwise, there is no guarantee that only one and the same reference level is introduced as a global vertical datum anywhere and everywhere (GNSS-GGM is not sufficient).

A Unified Height System: a GGOS challenge

WG on Vertical Datum Standardization

- Initiated during the IUGG General Assembly in Melbourne, July 2011
- Approved by the IAG Executive Committee in December 2012
- Term: 2011 2015

Objectives

- To bring together all teams working on the computation of W_0 to elaborate an inventory describing individual methodologies, conventions, standards, and models presently applied;
- To implement a new W_0 computation following individual (own) methodologies, but applying the same input geodetic models;
- To make a proposal for a formal IAG/GGOS convention about W_0 supported by a document containing the detailed computation of the recommended value.
- To provide a standard about the usage of W₀ in the vertical datum unification describing a appropriate strategy to connect (unify, transform) any local height system with the global W₀ reference level.

Interaction with other IAG/GGOS components

Earth's surface

IAG Commission 1 (Reference Frames)

IERS (umbrella of IAG geometry services)

IAS (International Altimetry Service)

GGOS-BSC (Bureau for Standards and Conventions)

ICCT (Inter Commission Committee on Theory)

Earth's gravity field

IAG Commission 2 (Gravity Field)

IGFS (umbrella of IAG gravity services)

ICGEM (Int. Centre for Global Earth Models)

(initial) Members and on-going activities

L. Sánchez (Germany), chair \implies W₀-computation based on fixed-GBVP, analytical solution

R. Cunderlík (Slovakia)

Z. Faskova (Slovakia)

K. Mikula (Slovakia)

N. Dayoub (Syria)

P. Moore (United Kingdom)

Z. Šima (Czech Republic)

V. Vatrt (Czech Republic)

M. Vojtiskova (Czech Republic)

W₀-computation based on fixed-GBVP, Boundary Element

Method (BEM)

W₀-computation based on averaging W-values from a GGM on points describing the sea surface (MSS)

 W_0 -computation based on a reference ellipsoid ($W_0 = U_0$)

W₀-computation based on averaging W-values from a GGM on points describing the sea surface (MSS)

J. Huang (Canada)

D. Roman (USA)

Y. Wang (USA)

J. Agren (Sweden)

Regional realisation of a global W₀

Further comments

- The different teams computing W_0 are using the same input data, but their own methodology.
- Since all the computations are delivering very close results, we can concentrate now on standards and conventions for a formal recommendation on W_0 .
- We want to evaluate:
 - The combination of a "geodetic" sea surface model and an "oceanographic" DOT-model to reproduce a sea surface closer to an equipotential surface (geoid);
 - The integration of polar regions on the Earth's surface representation;
 - Differences between W₀ values obtained from a long-term mean sea surface model and yearly mean sea surface models;
 - A formal procedure for the error propagation analysis .

First concrete results will be presented during the next International Symposium on Gravity, Geoid and Height Systems **GGHS 2012**, **Venice**, **Italy**

