

Report on the activities of the Working Group

Vertical Datum Standardisation

A common initiative of

GGOS Theme 1: Global Height System International Gravity Field Service (IGFS)

IAG Commission 2: Gravity Field

IAG Commission 1: Reference Frames

Initial members

L. Sánchez (Germany), chair

R. Čunderlík (Slovakia)

Z. Faskova (Slovakia)

K. Mikula (Slovakia)

N. Dayoub (Syria)

P. Moore (United Kingdom)

Z. Šima (Czech Republic)

V. Vatrt (Czech Republic)

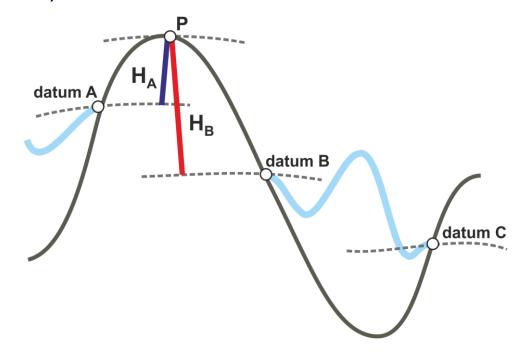
M. Vojtiskova (Czech Republic)

J. Huang (Canada)

D. Roman (USA)

Y. Wang (USA)

J. Ågren (Sweden)


Motivation 1: inconsistent height systems

The Global Geodetic Observing System (GGOS) requires geodetic reference frames with

- an order of accuracy higher than the magnitude of the phenomena and effects we want to study (e.g. global change);
- consistency and reliability worldwide;
- long-term stability.

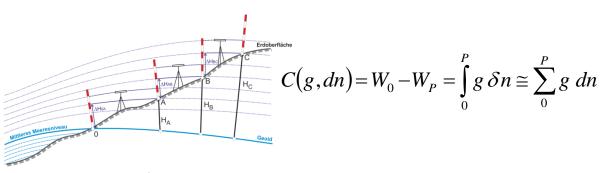
The existing height systems

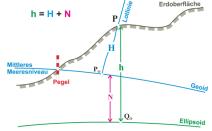
- refer to different levels (many [dm] of discrepancy);
- realise different types of heights (normal, orthometric, etc.);
- omit (sea and land) vertical variations with time;
- do not support the precise combination of h-H-N (= ?)

Motivation 2: new methods for height determination

Today

Levelling in combination with gravity reductions

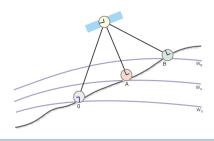

Desired


Disturbing potential in combination with a reference ellipsoid

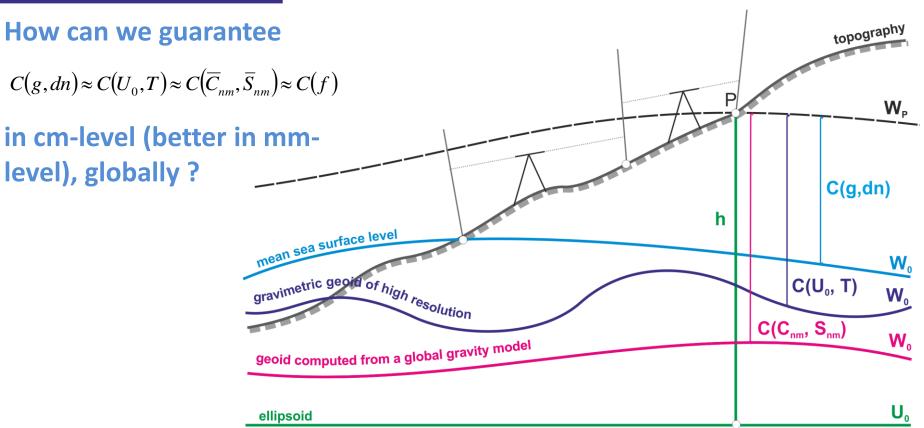
In the future

Global gravity field models in combination with ITRS/ITRF coordinates

Comparison of clock frequencies of high-precision

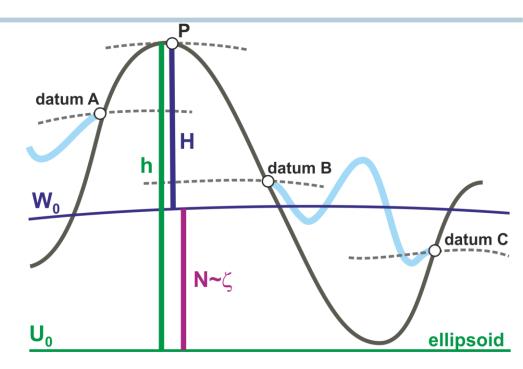


$$C(U_0,T) = -(U_0 - W_0) + \bar{\gamma}(\varphi)h - T(\varphi,\lambda,h)$$


$$C(\overline{C}_{nm}, \overline{S}_{nm}) = W_0 - [V(r, \theta, \lambda) + Z(r, \theta)]$$

$$C(f) = c^2 \left(\frac{f - f_0}{f_0} \right)$$

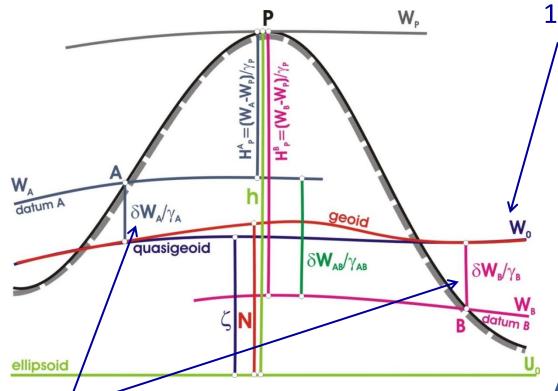
Reference level depending on input data?


- The same W₀ value for all existing (regional) geoids?
- The same geoid with different (regional) W₀ values?
- Only one geoid with only one W₀ value?

Solution

A global vertical reference system

- To solve the discrepancies between the existing height systems and
- To support the different techniques for height determination.



Implicit characteristics:

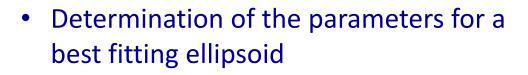
- One reference level (W₀ or geoid) to be used globally;
- All existing geo-potential numbers (physical heights) referring to one and the same global level;
- Precise combination with geometric heights and geoid models of high resolution, i.e. h-H-N=0.

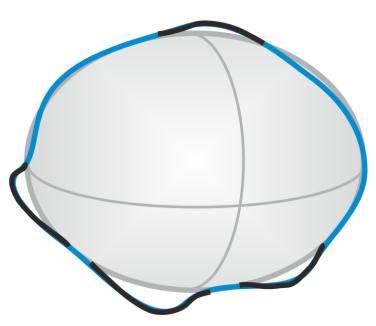
Strategy

- Selection (Definition and realisation) of a global reference level W₀
 - W_0 = potential of the geoid
 - Geoid = equipotential surface best fitting the global mean sea (Gauss definition)

GGHS 2012, Section 5 (Thursday morning)

GGHS 2012, Section 5 (Wednesday afternoon)


- 2. Connection of the individual reference levels with the global W_0
 - Basic approach: $h H N = \frac{\delta W}{\gamma}$


Poster session today and tomorrow!

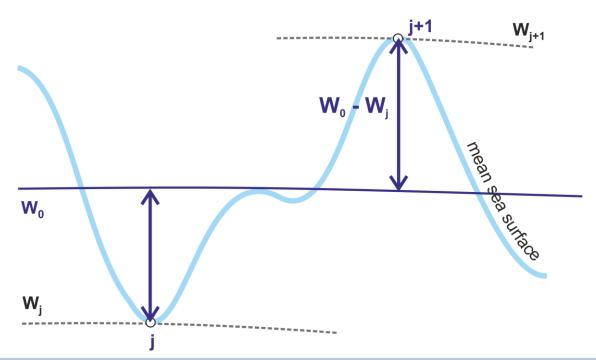
Empirical estimation of W₀

In the 1990s and before:

$$U_0 = U(a, f, \omega, GM)$$
; or $U_0 = U(a, J_2, \omega, GM)$

Then by definition:

$$W_0 \stackrel{!}{=} U_0$$


Empirical estimation of W₀

Late 1990s and 2000s:

$$\int_{S} \Xi^{2} ds = \min; \quad \Xi = \frac{W_{0} - W_{j}}{\gamma_{j}}$$

 Ξ : Sea surface topography

- Points *j* with coordinates from satellite altimetry describe the mean sea surface;
- Potential values W are derived from a global gravity model

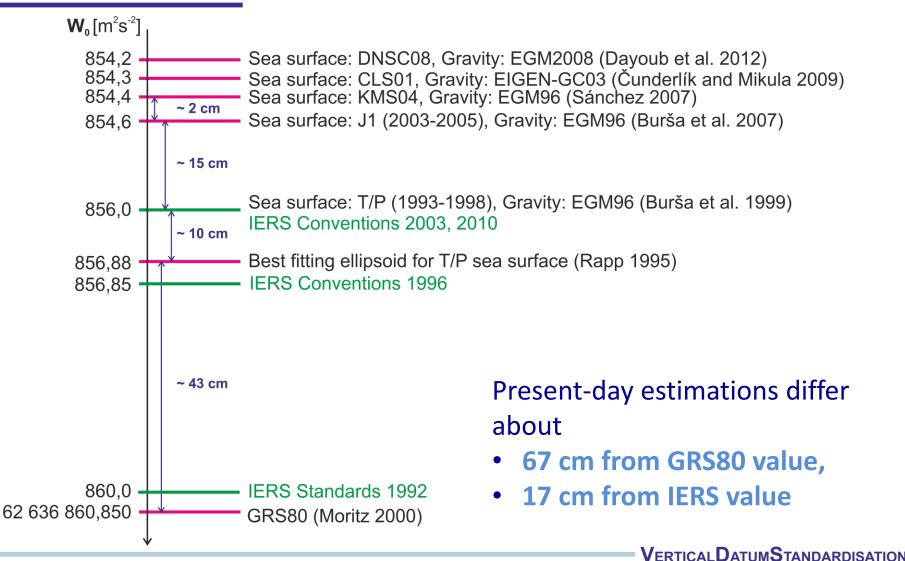
Empirical estimation of W₀

Today: solution of the fixed geodetic boundary value problem:

$$\nabla^2 \delta W(\mathbf{X}) = 0 \qquad \mathbf{X} \in \Omega$$
$$\delta W(\mathbf{X}) \to 0 \qquad \mathbf{X} \to \infty$$
$$\delta g(\mathbf{X}) = g(\mathbf{X}) - \gamma(\mathbf{X}) \quad \mathbf{X} \in \Sigma$$

Boundary surface Σ known;

Unknown: disturbing potential δW (= W_0 - U_0)


Boundary condition: gravity disturbances δg

Regularisation: δW vanishes at infinity

 $\mathbf{X} \leftrightarrow$ sea surface from satellite altimetry, continental surfaces from SMRT $g(\mathbf{X}) \leftrightarrow$ global gravity model $\gamma(\mathbf{X})$, $U_0 \leftrightarrow$ GRS80

Some examples of W₀ estimates

Remarks on W₀

- The reference level W₀ for potential differences can arbitrarily be appointed. However, to get the worldwide consistency desired within a global vertical reference system, the selected W₀ value must be realisable with high-precision at any time and anywhere around the world.
- Since W₀ represents only one quantity and it is not sufficient to estimate position and geometry of the equipotential surface it is defining; the main problem to solve here is not the determination of the W₀ value per se, but its realisation.
- Therefore, it is necessary to estimate it from real observations of the Earth's gravity field and surface.
- The uniqueness, reliability and repeatability of the global reference level W₀ (or global geoid) can only be guaranteed by introducing specific conventions (like any other reference system!). On the contrary, there will exist as many height systems as W₀ computations.

Objectives

- To bring together all teams working on the computation of W₀ to elaborate an inventory describing individual methodologies, conventions, standards, and models presently applied;
- To implement a new W₀ computation following individual (own) methodologies, but applying the same input geodetic models;
- To make a proposal for a formal IAG/GGOS convention about W₀ supported by a document containing the detailed computation of the recommended value.
- To provide a standard about the usage of W₀ in the vertical datum unification describing an appropriate strategy to connect (unify, transform) any local height system with the global W₀ reference level.

On going-activities

L. Sánchez (Germany)

→ W₀-computation based on fixed-GBVP, analytical solution

- R. Čunderlík (Slovakia)
- Z. Faskova (Slovakia)
- K. Mikula (Slovakia)
- N. Dayoub (Syria)
- P. Moore (United Kingdom)
- Z. Šima (Czech Republic)
- V. Vatrt (Czech Republic)
- M. Vojtiskova (Czech Republic)

- W₀-computation based on fixed-GBVP, Boundary Element
- Method (BEM), Finite Element Method (FEM) and Finite Volume Method (FVM).
- W₀-computation based on averaging W-values from a GGM on points describing the sea surface (MSS)
 - W_0 -computation based on a reference ellipsoid ($W_0 = U_0$)
- \Rightarrow
- W₀-computation based on averaging W-values from a GGM on points describing the sea surface (MSS)

- J. Huang (Canada)
- D. Roman (USA)
- Y. Wang (USA)
- J. Ågren (Sweden)

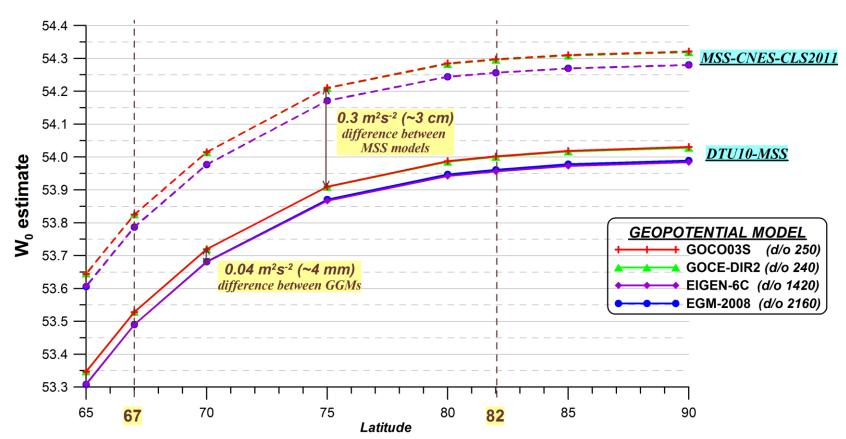
⇒ Re

Regional realisation of a global W₀

First results

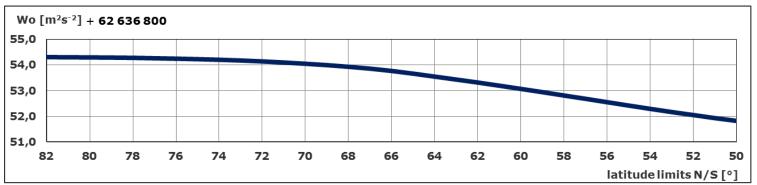
The different teams computed W_0 using the same input data, but their own methodologies.

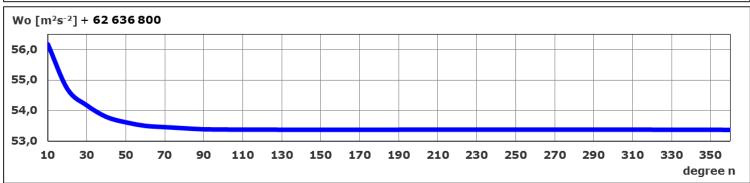
Estimates provided by N. Dayoub

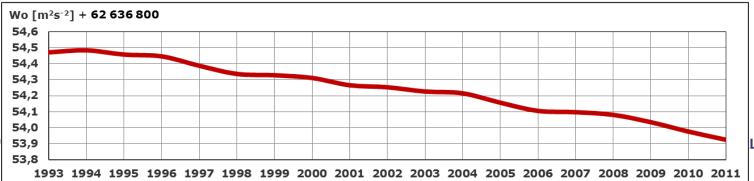

MSS	Domain N/S	GGM	Max degree	W ₀ (m ² s ⁻²)		
				1996.0	2001	2005
	82°/82°	EIGEN6C		62636854.43		62636854.19
		GOCO03S		62636854.43		62636854.19
CLS11	67º/67º	EIGEN6C		62636854.06		62636853.82
		GOCO03S	n=200	62636854.06		62636853.82
	82°/82°	EIGEN6C			62636854.11	62636854.00
DTU10		GOCO03S			62636854.11	62636854.00
	67º/67º	EIGEN6C			62636853.75	62636853.64
		GOCO03S			62636853.75	62636853.64

- W₀-dependence on the latitude coverage.
- W₀-dependence on the reference epoch of the mean sea surface model and potential coefficients.

First results


Estimates provided by R. Čunderlík, Z. Faskova, K. Mikula


W₀-dependence on the spectral resolution of the gravity model.



W₀-variation with latitudinal coverage.

 W_0 -variation with degree n of the GGM.

W₀-variation with time.

year

LDATUMSTANDARDISATION

Outlook

- All the computations are delivering very close results, but there are still differences of about 0,5 m²s-² (\sim 5 cm). It is necessary to start defining the standards and conventions for a formal recommendation on W₀.
- Activities to be faced in the close future:
 - Combination of a "geodetic" sea surface model and an "oceanographic" DOT-model to reproduce a sea surface closer to an equipotential surface (geoid);
 - Integration of polar regions on the Earth's surface representation;
 - Differences between W₀ values obtained from a long-term mean sea surface model and yearly mean sea surface models;
 - A formal procedure for the error propagation analysis.

Splinter Meeting @ GGHS 2012: Thursday, Oct. 11, 6:15 pm. Room 8. To join the group visit http://whs.dgfi.badw.de or send a message to sanchez@dgfi.badw.de.