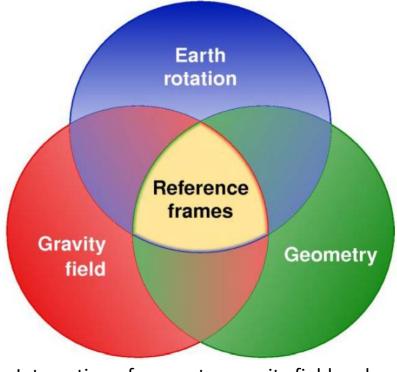
Vertical datum standardisation: a fundamental step towards a global vertical reference system

L. Sánchez

Deutsches Geodätisches Forschungsinstitut (DGFI), Germany

On behalf of the **Working Group on Vertical Datum Sandardisation**

A common initiative of


GGOS Theme 1: Global Height System International Gravity Field Service (IGFS)

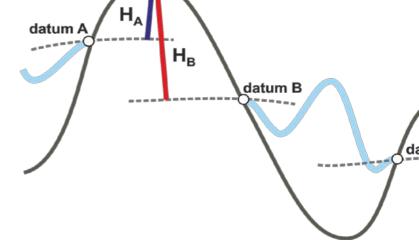
IAG Commission 2: Gravity Field

IAG Commission 1: Reference Frames

GGOS: Global Geodetic Observing System

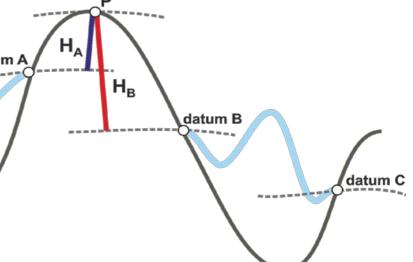
- GGOS is the contribution of Geodesy to a global Earth monitoring system;
- It was installed (2003) by the International Association of Geodesy (IAG) and participates in the Group on Earth Observation (GEO) and in the Global Earth Observation System of Systems (GEOSS).
- Main objectives:
 - To provide the observations needed to monitor, map and understand changes in the Earth's shape, rotation and mass distribution;
 - To provide the global frame of reference for measuring and consistently interpreting global change processes.

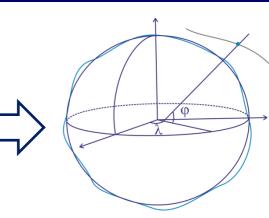
Integration of geometry, gravity field and Earth rotation, from Plag and Pearlman 2009

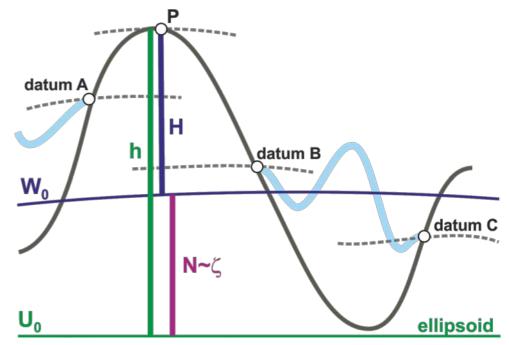

Existing reference systems/frames

In geometry

- **ITRS/ITRF**;
- Standardised realisation through IERS;
- worldwide unified reference frame;
- reliability in the cm-level.


In gravity field-related height systems


- Different reference levels (many [dm] of discrepancy);
- Different types of heights (normal, orthometric, etc.);
- Omission of (sea and land) vertical variations with time;
- Unprecise combination of h-H-N

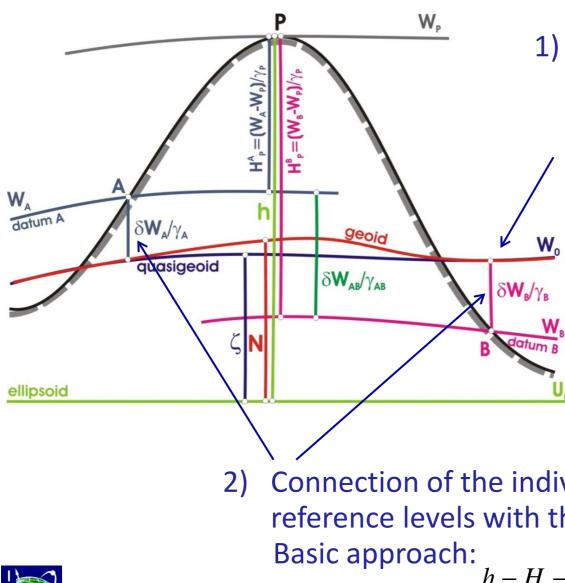

Before: many individual (local) horizontal reference systems

Today: one global unified geocentric reference system

A global vertical reference system: a GGOS challenge

Main objectives:

- To solve discrepancies between the existing height systems;
- To support the different techniques for height determination;
- To guarantee the same accuracy everywhere and at any time



Implicit characteristics:

- One reference level (W₀ or geoid) to be used globally;
- All existing geo-potential numbers (physical heights) referring to one and the same global level;
- Precise combination with geometric heights and geoid models of high resolution, i.e. h-H-N=0.

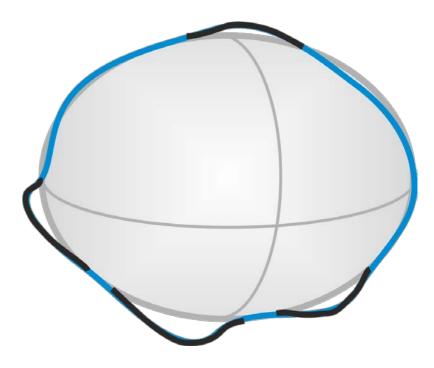
Strategy

- Selection (Definition and realisation) of a global reference level W_o
 - W₀ = potential of the geoid
 - Geoid = equipotential surface best fitting the global mean sea (Gauss definition)

Connection of the individual reference levels with the global W_0 $h - H - N = \frac{\delta W}{\delta W}$

5

Empirical estimation of W₀

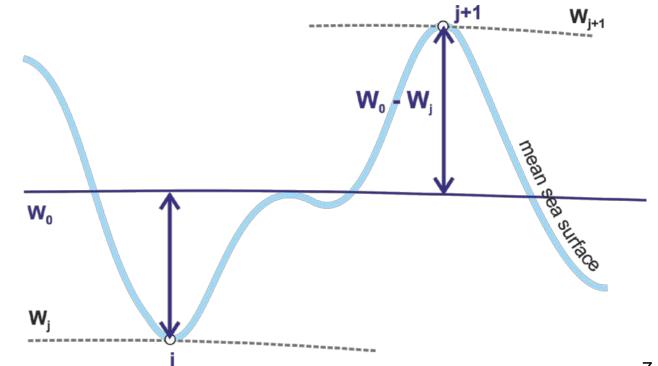

In the 1990s and before:

 Determination of the parameters for a best fitting ellipsoid

 $U_0 = U(a, f, \omega, GM); \text{ or } U_0 = U(a, J_2, \omega, GM)$

Then by definition:

$$W_0 = U_0$$


Empirical estimation of W₀

Late 1990s and 2000s:

- Points *j* with coordinates from satellite altimetry describe the mean sea surface;
- Potential values *W* are derived from a global gravity model

$$\int_{S} \Xi^{2} ds = \min; \quad \Xi = \frac{W_{0} - W_{j}}{\gamma_{j}}$$

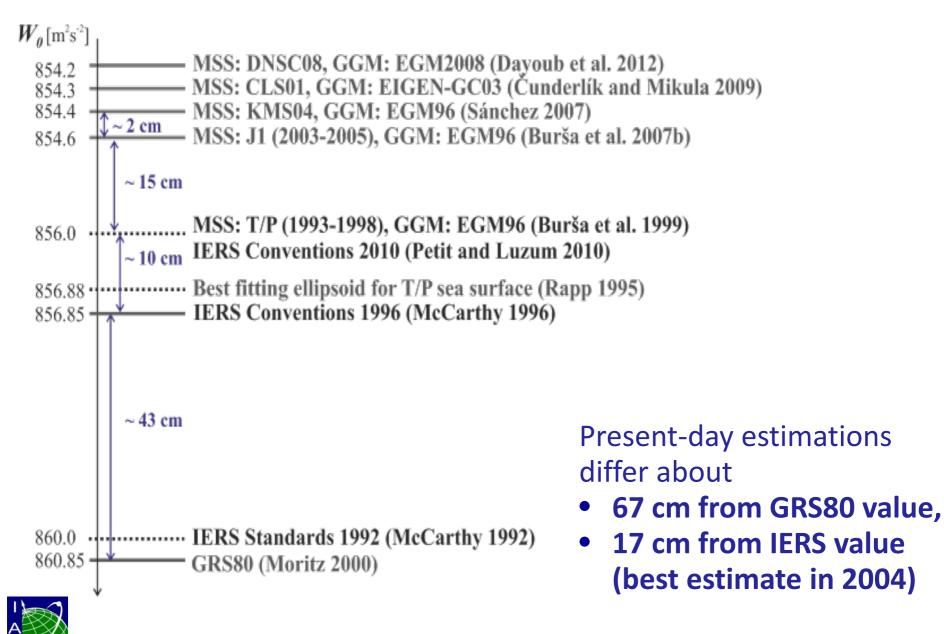
 Ξ : Sea surface topography

Empirical estimation of W₀

Today: solution of the fixed geodetic boundary value problem:

$$\nabla^2 T = 0$$
, outside Σ

$$-\frac{\partial T}{\partial r} - \frac{2}{R}T = \delta g - \frac{2}{R}\Delta W_0^i, \text{ on } \Sigma$$


 $T \rightarrow 0$, at ∞

- Boundary surface Σ known;
- Unknown: datum discrepancy
 - $\Delta W (= W_0 U_0)$
- Boundary condition: gravity disturbances δg
- Regularisation: T vanishes at infinity

 $\Sigma \leftrightarrow$ sea surface from satellite altimetry, continental surfaces from SMRT g(X) \leftrightarrow global gravity model $\gamma(X), U_0 \leftrightarrow$ GRS80

Some examples of W₀ estimates

GQQS

WG on Vertical Datum Standardization (VDS)

Term: 2011-2015

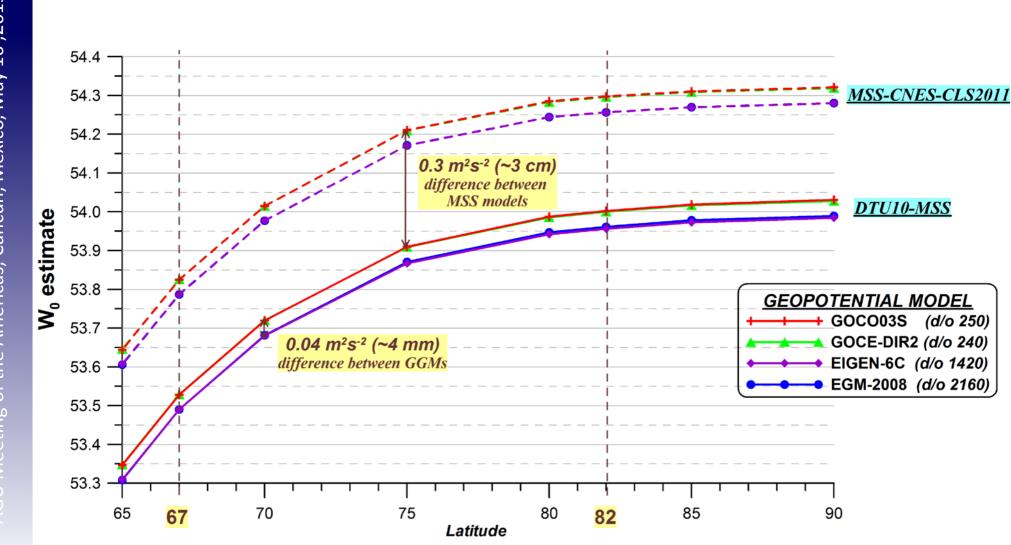
Objectives:

- To make a recommendation about the W₀ value to be introduced as the reference level in the GGOS unified vertical reference system
- To outline the strategy for the local/regional realisation of this W₀.

New W₀ estimations carried out within this WG

- L. Sánchez (Germany)
- R. Čunderlík (Slovakia)Z. Faskova (Slovakia)K. Mikula (Slovakia)
- N. Dayoub (Syria) P. Moore (United Kingdom)
- Z. Šima (Czech Republic)V. Vatrt (Czech Republic)M. Vojtiskova (Czech Republic)

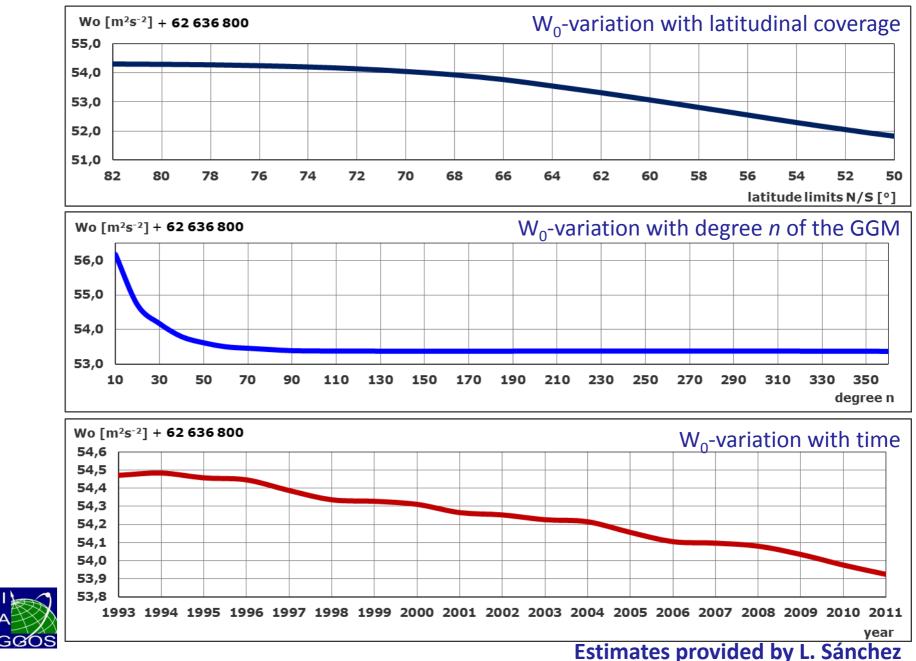
- W₀-computation based on fixed-GBVP, Boundary Element Method (BEM), Finite Element Method (FEM) and Finite Volume Method (FVM).
- W_0 -computation based on averaging W-values from a GGM on points describing the sea surface (MSS) W_0 -computation based on a reference ellipsoid ($W_0 = U_0$)
- W₀-computation based on averaging W-values from a GGM on points describing the sea surface (MSS)



WG-VDS: first results

- The different teams computed W₀ using the same input data, but their own methodologies;
- It was evaluated the dependence of W₀ on:
 - Geographical coverage of the mean sea surface model;
 - Spatial resolution of the mean sea surface model;
 - Spectral resolution of the global gravity model;
 - Changes with time of the mean sea surface and the global gravity model.
- Models applied:
 - Mean sea surface models: MSS_CNES_CLS11 (Schaeffer et al. 2012), DTU10 (Andersen 2010), mean yearly models individually computed by (Dayoub et al. 2012, Sánchez 2012, Burša et al. 2012)
 - Global gravity models: EGM2008 (Pavlis et al. 2012), EIGEN-6C (Förste et al. 2011), GOCO03S (Mayer-Gürr, et al. 2012)

WG-VDS: some results



Estimates provided by R. Čunderlík, Z. Faskova, K. Mikula

WG-VDS: some results

13

Conclusions and outlook

- All the computations are delivering very close results: W₀ = 62 636 854 m²s⁻²
- There are still minor differences (0,5 m²s-², 5 cm), which can be solved outlining concrete standards and conventions like:
 - Latitudinal coverage 82°N/S
 - Global gravity model with n=200, derived form a combination of GRACE and GOCE data
 - Reference epoch of W₀ and its changes with time
 - The computations carried out within the WG confirm that the actual inuse W₀ value (**62 636 856 m²s⁻²**) shall be replaced by a new (best estimate) value.
- On-going activities:
 - A formal procedure for the error propagation analysis in the W₀ computation,
 - Computation of a reference ellipsoid following the Somigliana

