

Joint Working Group 0.1.1

Vertical Datum Standardisation

A common initiative of

GGOS Theme 1: Global Height System International Gravity Field Service (IGFS)

IAG Commission 2: Gravity Field

IAG Commission 1: Reference Frames

Members

- L. Sánchez (Germany), Chair
- R. Čunderlík (Slovakia)
- Z. Faskova (Slovakia)
- K. Mikula (Slovakia)
- N. Dayoub (Syria)
- P. Moore (United Kingdom)
- Z. Šima (Czech Republic)
- C. Tocho (Argentina)

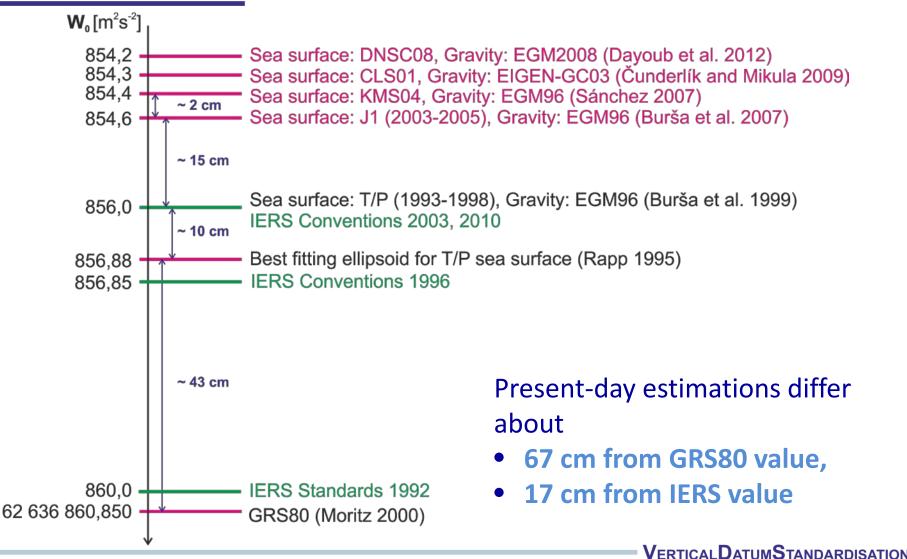
- J. Makinen (Finnland)
- R. Kless (The Netherlands)
- V. Vatrt (Czech Republic)
- M. Vojtiskova (Czech Republic)
- J. Huang (Canada)
- D. Roman (USA)
- Y. Wang (USA)
- J. Ågren (Sweden)

VERTICAL DATUM STANDARDISATION

Motivation

GGOS Theme 1: Short-term items (IAG Geodesist Handbook 2012)

01: Refinement of standards and conventions for the definition and realisation of a Global Unified Height System...


02: Divulgation and integration of the global height system standards and conventions within the IAG components (Commissions, Services, GGOS)...

03: Establishment of a global vertical reference level: to make a recommendation about the W_0 value to be adopted as the conventional reference level for the Unified Global Height System. This W_0 value must also be promoted as a defining parameter for the computation of an improved mean Earth ellipsoid and as a reference value for the computation of the constant L_G within the IERS conventions. A formal recommendation about the W_0 value to be adopted within IAG is a responsibility of the GGOS Working Group on "Vertical Datum Standardisation", which is a joint initiative of GGOS Theme 1, IAG Commissions 1 and 2 and the International Gravity Field Service.

VERTICAL DATUM STANDARDISATION

Some examples of W₀ values

About W₀ estimations

Status

At present, the most accepted W₀ value corresponds to the "best estimate" available in 2004. It is included in the IERS Conventions and was computed by Burša et al. (1999).

New estimations:

 Computations started in 2005 produce four very close W₀ values (differences of about 0,2 m²s⁻²): Burša et al. (2007), Čunderlik et al. (2008, 2009), Dayoub et al. (2010, 2012), Sánchez et al. (2005, 2007, 2008).

What to do?

- To keep the IERS value, although it differs about ~2 m²s⁻² from the recent estimations?
- To recommend a (new) "best present estimate" for W₀?

WG on Vertical Datum Standardization

Objectives

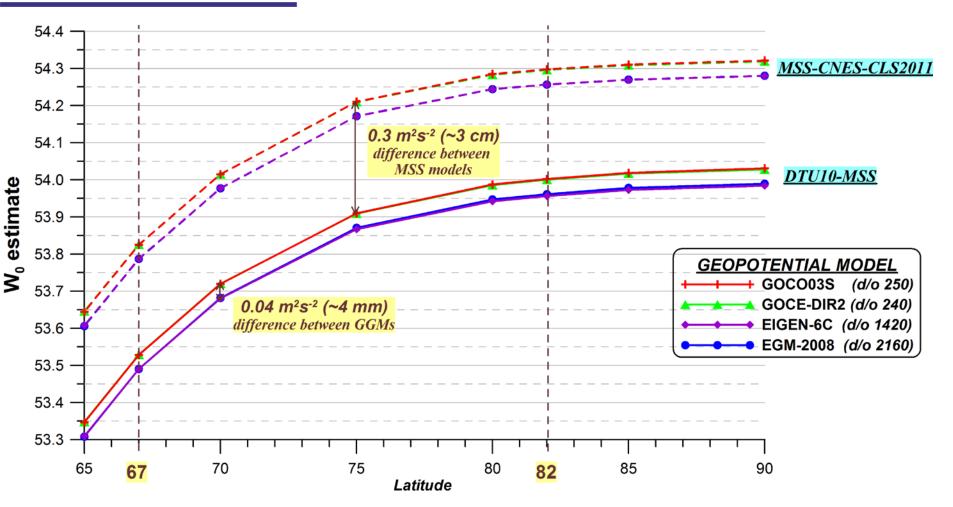
- To bring together all teams working on the computation of W₀ to elaborate an inventory describing individual methodologies, conventions, standards, and models presently applied;
- To implement a new W₀ computation following individual (own) methodologies, but applying the same input geodetic models;
- To make a proposal for a formal IAG/GGOS convention about W₀ supported by a document containing the detailed computation of the recommended value.
- To provide a standard about the usage of W₀ in the vertical datum unification describing an appropriate strategy to connect (unify, transform) any local height system with the global W₀ reference level.

Activities faced in 2011-2012

First Results (1/3)

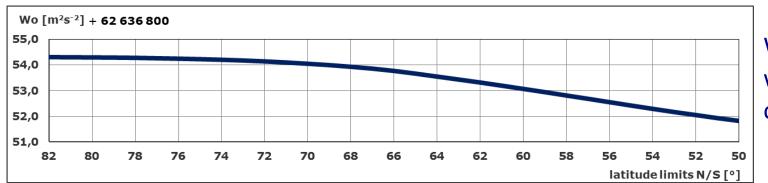
Different teams computed W_0 using the same input data, but their own methodologies:

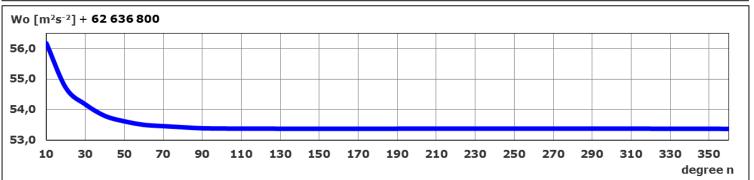
Input data

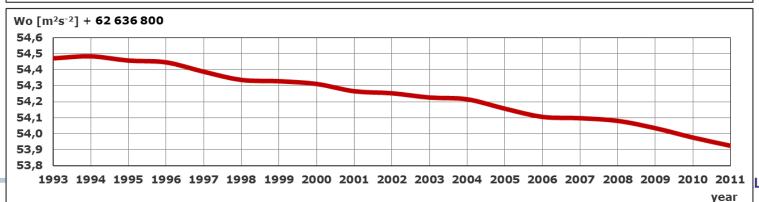

- mean sea surface models (MSS):
 - CLS11 (Schaeffer et al. 2012)
 - DTU10 (Andersen 2010)
- global gravity model (GGM)
 - EGM2008 (Pavlis et al, 2012)
 - EIGEN6C (Förste et al. 2011)
 - GOCO3S (Mayer-Gürr et al. 2012)

Analysis of

- W₀-dependence on the MSS latitude coverage.
- W₀-dependence on the retained degree n of the GGM.
- W₀-dependence on the reference epoch of the MSS and GGM.


First Results (2/3)


Estimates provided by R. Čunderlík, Z. Faskova, K. Mikula


First Results (3/3)

W₀-variation with latitudinal coverage.

 W_0 -variation with degree n of the GGM.

W₀-variation with time.

LDATUMSTANDARDISATION

Estimates provided by L. Sánchez

Conclusions and Outlook

- All the computations are delivering very close results (around 62 636 854 m^2s^{-2}), but there are still differences of about 0,5 m^2s^{-2} (~ 5 cm). It is necessary to start defining the standards and conventions for a formal recommendation on W_0 .
- Activities to be faced in the close future:
 - Combination of a "geodetic" sea surface model and an "oceanographic" DOT-model to reproduce a sea surface closer to an equipotential surface (geoid);
 - Integration of polar regions on the Earth's surface representation;
 - Differences between W₀ values obtained from a long-term mean sea surface model and yearly mean sea surface models;
 - A formal procedure for the error propagation analysis.

More details at http://whs.dgfi.badw.de