AUT1 as an IHRS station

Establishing an IHRS reference station

G.S. Vergos and I.N. Tziavos

GravLab, DGS, AUTH

IAG-IASPEI 2017 Session G2.6

Kobe, Japan July 30 – August 5, 2017

G.S. Vergos & I.N. Tziavos

Establishing AUT1/IHRS

OUTLINE

- IHRS/IHRF Why AUT1?
- Methodology/Theory
- Data availability
- Processing
- **Results**

• Conclusions

Establishing AUT1/IHRS

IHRF as a realization of IHRS

Realization of the IHRS: International Height Reference Frame (IHRF)

Primary needs:

- 1) Establishment of a vertical reference network as the main component of the IHRF.
- 2) Determination of potential values W_P (and their changes \dot{W}_P) at the reference network stations as accurate as possible.

Splinter Meeting IAG JWG0.1.2 GGHS2016 Thessaloniki, Greece (© Sánchez, 2016)

Establishing AUT1/IHRS

IHRF as a realization of **IHRS**

Why AUT1?

SWG0.1.2 Report of the IAG Vol. 40 – Travaux de l'AIG 2015-2017 (© Sánchez, 2017)

Establishing AUT1/IHRS

IHRF as a realization of IHRS

Why AUT1? • EUREF Station (Class A Station)

The AUT1 EUREF Class A station (© EUREF)

IHRF as a realization of IHRS

Why AUT1?

- EUREF Station (Class A Station)
- HNHS TG station in proximity (9.2 km)

Thessaloniki SONEL TG station (© PSMSL)

Establishing AUT1/IHRS

- **IHRF** as a realization of IHRS
- Why AUT1?
 - EUREF Station (Class A Station)
 - HNHS TG station in proximity (9.2 km)
 - GravLab A10(#027) station in proximity (8 km)

GravLab A10 (#027) (© GravLab)

Establishing AUT1/IHRS

- **IHRF** as a realization of **IHRS**
- Why AUT1?
 - EUREF Station (Class A Station)
 - HNHS TG station in proximity (9.2 km)
 - GravLab A10(#027) station in proximity (8 km)
 - Abundance of local gravity data (25208 pts. with S<210km)

Distribution of available local gravity anomalies around AUT1

'RAV

AB

Establishing AUT1/IHRS

IHRF as a realization of IHRS

Why AUT1?

- EUREF Station (Class A Station)
- HNHS TG station in proximity (9.2 km)
- GravLab A10(#027) station in proximity (8 km)
- Abundance of local gravity data (25208 pts. with S<210km)
- Levelling connection with the Hellenic VRF through dedicated 1st order spirit leveling

Methodology

Estimate the potential @ AUT1 employing ellipsoidal, orthometric and geoid heights (synthesis of GOCE GGM + local data through RCR)

$$\widehat{W}_{AUT1} = W_o^{CVD} - \Delta C_{AUT1}^{CVD/LVD}$$

Methodology

Determine N_{AUT1} using an RCR concept as:

$$N_{AUT1} = N_0 + N_{GOCE} \Big|_2^{n_1} + N_{RTM} \Big|_{n_{1+1}}^{216,000} + N_{res} \Big|_{216,000}^{\infty}$$

Methodology

Determine N_{AUT1} using an RCR concept as:

$$N_{AUT1} = N_0 + N_{GOCE} |_2^{n_1} + N_{RTM} |_{n_{1+1}}^{216,000} + N_{res} |_{216,000}^{\infty}$$

$$N_0 = \frac{GM - GM_o}{R\gamma} - \frac{W_o - U_o}{\gamma}$$

- $N_{GOCE}|_2^{n_1}$ GOC005s to d/o 220
- $N_{RTM}|_{n_{1+1}}^{216,000}$ SRTM3" DTM for the wider Hellenic area

 $N_{res}|_{216,000}^{\infty}$ From Δg_{res} employing numerical integration, LSC, FFT, Stokes modifications (WG), radial spherical basis functions

Establishing AUT1/IHRS

Methodology – Conventions

- TF (tide-free) system
- o GRS80 ellipsoid with

 $GM_o = 398600.5000109 \ m^3 s^{-2}$ $U_o = 62636860.850 \ m^2 s^{-2}$.

- Latest IERS Earth's geocentric gravitational constant $GM = 398600.4418 \ 109 \ m^3 s^{-2}$
- Latest IAG adopted zero-level geopotential (2015) $W_o = 62636853.40 \ m^2 s^{-2}$,
- Mean Earth's radius has been taken equal to R = 6371008.7714 m

Establishing AUT1/IHRS

$h_{AUT1} = 150.0785 \pm 0.0020 \text{ m}$

1. POSITIONS/VELOCITIES PUBLISHED BY EUREF

EUREF has classified AUT100GRC (Thessaloniki, Greece) as a class A station which means that it can used as fiducial station for EUREF densifications.

LATEST RELEASE

EPN_A_ETRF2000_C1934.SSC - EPN_A_IGb08_C1934.SSC (March 25, 2017)

ETRF2000	epoch t _o	Position (m)			Velocity (m/y)		
		Х	Y	Z	V _X	V _Y	Vz
086/2005 - 035/2017	001/2005	4466283.764 ± 0.000	1896166.630 ± 0.000	4126096.571 ± 0.000	0.0027 ± 0.0000	0.0024 ± 0.0000	-0.0071 ± 0.0000

IGb08	epoch t ₀	Position (m)				Velocity (m/y)	
		х	Y	Z	V _X	V _Y	Vz
086/2005 - 035/2017	001/2005	4466283.430 ± 0.000	1896166.878 ± 0.000	4126096.789 ± 0.000	-0.0149 ± 0.0000	0.0209 ± 0.0000	0.0043 ± 0.0000

Click HERE to see a plot of how the station positions between successive cumulative solutions agree with each other.

+ PREVIOUS RELEASES

2. POSITIONS/VELOCITIES PUBLISHED BY THE IGS

IGS has not yet released coordinates for AUT100GRC (Thessaloniki, Greece).

3. POSITIONS/VELOCITIES PUBLISHED BY THE IERS

LATEST RELEASE

ETRF2000(14R) not yet ready

ITRF2014_GNSS.SSC.txt (January 21, 2016)

ITRF2014	epoch t ₀	Position (m)				Velocity (m/y)	
		х	Y	Z	V _X	V _Y	Vz
048/2006 - 365/2014	001/2010	4466283.353 ± 0.001	1896166.980 ± 0.001	4126096.805 ± 0.001	-0.0148 ± 0.0000	0.0208 ± 0.0000	0.0041 ± 0.0000
start - 048/2006	001/2010	4466283.351 ± 0.001	1896166.980 ± 0.001	4126096.808 ± 0.001	-0.0148 ± 0.0000	0.0208 ± 0.0000	0.0041 ± 0.0000

AUT1 ellipsoidal height from DGS/AUTH

Establishing AUT1/IHRS

 $h_{AUT1} = 150.0785 \pm 0.0020 m$ $H_{AUT1} = 108.8291 \pm 0.0021 m$

AUT1 dedicated spirit leveling from AUT1 leveling BM to the ARP

Establishing AUT1/IHRS

AUT1 dedicated spirit leveling

AΒ

AUT1 1st order spirit leveling to connect to HVRF (Vlachakis et al. 2005)

Establishing AUT1/IHRS 5

$h_{AUT1} = 150.0785 \pm 0.0020 \text{ m}$

$H_{AUT1} = 108.8291 \pm 0.0021 m$

*g*_{AUT1}=980234905.23<u>+</u>19.98 μGal

CG-5 AUTOGRAVTM SCINTREX

GravLab dedicated gravity survey connecting A10(#027) with AUT1

Establishing AUT1/IHRS

 $N_{RTM}|_{n_{1+1}}^{216,000}$ SRTM3" D

SRTM3" DTM for the wider Hellenic area

The generated SRTM3" DTM/DBM around AUT1 for the evaluation of RTM

Establishing AUT1/IHRS

Select local gravity data based on the JWG0.1.2 concept

Statistics of the available local free-air gravity anomalies around AUT1. Unit: [mGal]

	nr. pts.	max	min	mean	std
S∈[0,10]	460	137.739	11.111	58.057	17.929
S∈(10,50]	2209	180.365	-20.643	31.579	37.364
S∈(50,110]	6319	192.130	-44.743	13.411	28.892
S∈(110,210]	16221	258.979	-107.127	23.252	32.643
all S∈[0,210]	25205	258.979	-107.127	22.150	32.775

Distribution of local gravity data around AUT1

Establishing AUT1/IHRS

.AB

Establishing AUT1/IHRS

Establishing AUT1/IHRS

AB

Establishing AUT1/IHRS

AB

Establishing AUT1/IHRS

Reduction to GOCO05s (n_{max}=183, 200, 220)

GOCE GGM evaluation over Greece

Establishing AUT1/IHRS

Reduction to GOCO05s (n_{max}=183, 200, 220)

Statistics of the original and reduced free-air gravity anomalies. Unit: [mGal]

	max	min	mean	std
Δg _f	258.979	-107.127	22.150	32.775
Δg _{red} (d/o 183)	200.782	-107.907	-10.068	32.971
Δg _{red} (d/o 200)	195.579	-110.758	-9.798	32.475
Δg _{red} (d/o 220)	201.558	-111.594	-10.459	30.699

Compute RTM effects on gravity the usual way (terrain effects relative to a smooth but varying surface generated from the fine-detail DTM)

Statistics of the original and reduced free-air gravity anomalies. Unit: [mGal]

	max	min	mean	std
Δg _f	258.979	-107.127	22.150	32.775
Δg _{red} (d/o 183)	200.782	-107.907	-10.068	32.971
Δg _{res} (d/o 183)	141.590	-90.568	6.562	21.604
Δg _{red} (d/o 200)	195.579	-110.758	-9.798	32.475
Δg _{res} (d/o 200)	138.192	-89.915	5.804	20.279
Δg _{red} (d/o 220)	201.558	-111.594	-10.459	30.699
Δg _{res} (d/o 220)	121.683	-88.945	4.151	18.328

Δg_{res} empirical covariance functions

Establishing AUT1/IHRS

 $\Delta g, \Delta g_{red}$ and Δg_{res} empirical covariance functions

Establishing AUT1/IHRS

G.S. Vergos & I.N. Tziavos

Establishing AUT1/IHRS

* RTM does not work well over marine areas due to the limited resolution/accuracy of current bathymetry models

G.S. Vergos & I.N. Tziavos

Establishing AUT1/IHRS

Compute RTM effects as a synthesis of **dv_ell2014** (d/o 221 to 2160) and **ERTM2160** (Hirt et al. 2016) (from d/o 2160 to 99,000)

Statistics of the original and residual free-air gravity anomalies. Unit: [mGal]

	max	min	mean	std
Δg _f	258.979	-107.127	22.150	32.775
Δg _{red} (d/o 220)	201.558	-111.594	-10.459	30.699
Δg _{res} (d/o 220)	121.683	-88.945	4.151	18.328
Δg _{res} (dv_ell&ERTM)	114.401	-66.380	0.354	15.846

Δg_{res} with the classical (left) and dv_ell&ERTM approach (right)

Establishing AUT1/IHRS

_AB

Reduction to XGM2016 (n_{max} =719) Compute RTM effects on gravity the usual way

Statistics of the original and residual free-air gravity anomalies. Unit: [mGal]

	max	min	mean	std
Δg _f	258.979	-107.127	22.150	32.775
Δg _{red} (d/o 220)	201.558	-111.594	-10.459	30.699
Δg _{res} (d/o 220)	121.683	-88.945	4.151	18.328
Δg _{res} (dv_ell&ERTM)	114.401	-66.380	0.354	15.846
Δg _{red} (d/o 719)	200.017	-120.424	-5.468	23.876
Δg _{res} (d/o 719)	101.551	-64.925	3.118	14.854

BRAV

Establishing AUT1/IHRS

Δg_{res} relative to GOCO (left) and relative to XGM2016 (right)

Establishing AUT1/IHRS

Δg_{res} relative to GOCO (left) and relative to XGM2016 (right)

Establishing AUT1/IHRS

Effect of estimation method

Statistics of the estimated geoid and potential at AUT1

	N _{AUT1} [m]	N ^{err} AUT1 [m]	$W_{AUT1} \left[m^2/s^2 \right]$
EGM2008	42.5621	0.0035	64.4393
XGM2016	42.5091	0.0063	63.9198
GOCO05s ^{LSC} (RTM)	42.2413	0.0189	61.2947
GOCO05s ^{LSC} (dv_ell & ERTM)	42.3647	0.0168	62.5043
FFT 1d (1º cap)	42.1410		60.3125
FFT WG (d/o 220)	42.1041		59.9498
Stokes (1.5° cap)	42.1921		60.8124
SBFs (smooth)	42.4528	0.0198	63.3679
SBFs (no smooth)	42.4494	0.0186	63.3346

AB

Effect of gridding (splines, krigging, bilinear)

Statistics of the estimated geoid and potential at AUT1

	N _{AUT1} [m]	Nerr AUT1 [m]	$W_{AUT1} \left[m^2 / s^2 \right]$
GOCO05s ^{LSC} (RTM)	42.2413	0.0189	61.2947
FFT 1d (1° cap)	42.1410		60.3125
FFT WG (d/o 220)	42.1041		59.9498
Stokes (1.5° cap)	42.1921		60.8124
FFT 1d (1° cap)	-0.0029		60.2831
FFT WG (d/o 220)	-0.0200		59.7537
Stokes (1.5° cap)	-0.0261		60.5575
FFT 1d (1º cap)	-0.0259		60.0576
FFT WG (d/o 220)	-0.0240		59.7533
Stokes (1.5° cap)	-0.0590		60.2341

ΔR

Effect of gridding (splines, krigging, bilinear)

Gravity residuals differences between spline/kringging (left) and spline/bilinear (right). σ_{dif} =1.5 mGal and 8.5 mGal respectively

Establishing AUT1/IHRS

Effect of data distribution and density

Use the GOCO5s LSC-based solution employing all data as reference and then evaluate the impact of data distribution and sampling

Minimum requirements on the terrestrial gravity data

- Gravity points with ±20 µGal accuracy needed to estimate the residual (quasi-)geoid height with ±5 mm uncertainty.
- Uncertainties of GGM and DTM must be added.

Template according to the gravity effect on the geoid $(\Delta g = 1.10^{-6} \text{ ms}^{-2} \rightarrow 1 \text{ mm})$

Distance	Compartments	# of points	Rounded values
$10 \ \mathrm{km}$	1	4	5
50 km	4	16	15
110 km	7	28	30
$210~\mathrm{km}$	11	44	45
Sum	23	92	95

See comments at the splinter meeting in the next slide.

Splinter Meeting IAG JWG0.1.2 GGHS2016 Thessaloniki, Greece (© Sánchez, 2016)

Establishing AUT1/IHRS

G.S. Vergos & I.N. Tziavos

9

Good distribution as per the JWG0.1.2 recommendation

Establishing AUT1/IHRS

Good distribution as per the JWG0.1.2 recommendation (x2)

Establishing AUT1/IHRS

Statistics of the estimated geoid and potential at AUT1

	N _{AUT1} [m]	N ^{err} _{AUT1} [m] W	$_{AUT1} \left[m^2/s^2 \right]$
GOCO05s ^{LSC} (RTM)	42.2413	0.0189	61.2947
Select data	42.0292	0.1053	59.2156
Select data (x2)	42.0425	0.0769	59.3460
Spline interp.	42.0798	0.1020	59.7116
Spline interp. (x2)	42.0890	0.0759	59.8018
Bilinear interp.	42.0767	0.1052	59.6812
Bilinear interp. (x2)	42.0806	0.0760	59.7194

Bad distribution contrary to the JWG0.1.2 recommendation

Establishing AUT1/IHRS

Bad distribution contrary to the JWG0.1.2 recommendation (x2)

Establishing AUT1/IHRS

Statistics of the estimated geoid and potential at AUT1

	N _{AUT1} [m]	N ^{err} AUT1 [m]	$W_{AUT1} \left[m^2 / s^2 \right]$
GOCO05s ^{LSC} (RTM)	42.2413	0.0189	61.2947
Select data	42.0292	0.1053	59.2156
Select data (x2)	42.0425	0.0769	59.3460
Spline interp.	42.0798	0.1020	59.7116
Spline interp. (x2)	42.0890	0.0759	59.8018
Bilinear interp.	42.0767	0.1052	59.6812
Bilinear interp. (x2)	42.0806	0.0760	59.7194
Random	42.1258	0.1399	60.1625
Random (x2)	42.1273	0.1174	60.1772

Effect of data distribution and density

- Use the GOCO5s LSC-based solution employing all data as reference and then evaluate the impact of data distribution and sampling
- But use RTM from dv_ell2016 and ERTM2016

Statistics of the estimated geoid and potential at AUT1

	N _{AUT1} [m]	$N_{AUT1}^{err}[m]$	$W_{AUT1} \left[m^2 / s^2 \right]$
GOCO05s ^{LSC} (RTM)	42.2413	0.0189	61.2947
GOCO05s ^{LSC} (dv_ell & ERTM)	42.3647	0.0168	62.5043
Select data	42.3433	0.1053	62.2945
Select data (x2)	42.3174	0.0769	62.0406
Spline interp.	42.3979	0.1020	62.8297
Spline interp. (x2)	42.3650	0.0759	62.5072
Bilinear interp.	42.3984	0.1052	62.8346
Bilinear interp. (x2)	42.3226	0.0760	62.0916
Random	42.3413	0.1399	62.2749
Random (x2)	42.3157	0.1174	62.0240
tablishing AUT1/IHRS	B RAV LA	/ B	G.S. Vergos & I.N. Tziav

Est

Prediction accuracy w.r.t. the observed gravity @AUT1

GOC005s^{LSC} (RTM) $\varepsilon_{AUT1}^{\Delta g} = 0.8815 mGal$ GOC005s^{LSC} (dv_ell&ERTM) $\varepsilon_{AUT1}^{\Delta g} = 0.2839 mGal$

GOCO05s^{LSC} (dv_ell&ERTM - JWG)

GOCO05s^{LSC} (dv_ell&ERTM – JWGx2)

EGM2008 LSC (RTM)

XGM2016^{LSC} (RTM)

SBFS (smooth)

Establishing AUT1/IHRS

 $\varepsilon_{AUT1}^{\Delta g} = 2.043 \, mGal$

 $\varepsilon_{AUT1}^{\Delta g} = 1.1303 \, mGal$

 $\varepsilon_{AUT1}^{\Delta g} = 1.7961 \, mGal$

 $\varepsilon_{AUT1}^{\Delta g} = 0.5719 \, mGal$

$$\varepsilon_{AUT1}^{\Delta g} = 0.7711 \, mGal$$

The final, recommended, potential of the AUT1 IHRF station, using LSC, all data and dv_ell&ERTM

$$N_{AUT1} = 42.3647 \pm 0.0168 m$$

 $W_{AUT1} = 62636862.5043 \pm 0.0017 \frac{m^2}{s^2}$

with spline interpolation and 2x the points

$$N_{AUT1} = 42.3650 \pm 0.0759 \, m$$

$$W_{AUT1} = 62636862.5072 \pm 0.0076 \ m^2/_{s^2}$$

The final, recommended, potential of the AUT1 IHRF station, using LSC, all data and dv_ell&ERTM (WGS84 & TF)

$$N_{AUT1} = 42.3647 \pm 0.0168 \, m$$

$$W_{AUT1} = 62636862.5043 \pm 0.0017 \ m^2/s^2$$

To GRS80 and MT

$$N_{AUT1}^{GRS80 MT} = 41.3987 \pm 0.0168 m$$
$$W_{AUT1}^{GRS80 MT} = 62636853.0347 \pm 0.0017 \frac{m^2}{s^2}$$

The final, recommended, potential of the AUT1 IHRF station, using LSC, all data and dv_ell&ERTM (WGS84 & TF)

$$N_{AUT1} = 42.3647 \pm 0.0168 \, m$$

$$W_{AUT1} = 62636862.5043 \pm 0.0017 \ m^2/_{s^2}$$

To GRS80 and MT

$$N_{AUT1}^{GRS80 MT} = 41.3987 \pm 0.0168 m$$
$$W_{AUT1}^{GRS80 MT} = 62636853.0347 \pm 0.0017 \frac{m^2}{s^2}$$

To GRS80 ZT

$$N_{AUT1}^{GRS80 ZT} = 41.4248 \pm 0.0168 m$$
$$W_{AUT1}^{GRS80 MT} = 62636853.2914 \pm 0.0017 \frac{m^2}{s^2}$$

Establishing AUT1/IHRS

CONCLUSIONS

• The use of a satellite only model and then (classic) RTM is not sufficient, given the problems (still) in bathymetry.

- \odot Using dv_ell2016 coupled by ERTM2016 (scales up to 200 m) seems promising.
- It provides the most consistent results with errors up to 5 cm in the geoid prediction, irrespective of the data distribution.
- \odot If interpolation/gridding is needed, then splines are to be preferred.
- \odot Other modifications of Stokes kernel need to be checked as well as the GBVP approach

Sincere thanks to (誠にありがとう):

- Verena Lieb and Michael Schmidt for the SBFs computations
- Christian Hirt and Martin Willberg for the discussions on the evaluation of RTM through dv_ell2016 and ERTM2016
- Roland Pail and Thomas Gruber for the XGM2016 coefficients

